Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 17(14): 14176-14188, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37427983

RESUMEN

In the anodic ethanol oxidation reaction (EOR) for direct ethanol fuel cells, the coverage of hydroxide (OHads) is a major adsorbent competing with C-C bond cleavage, which is necessary for complete ethanol oxidation (C1-pathway) and durability. Beyond utilizing a less-alkaline electrolyte that causes ohmic losses, an alternative strategy to optimize OHads coverage is to intentionally exploit local pH changes near the electrocatalyst surface that are governed by a combination of released H+ during EOR and OH- mass transport from the bulk solution. Here, we manipulate the local pH swing by fine-tuning the electrode porosity with Pt1-xRhx hollow sphere electrocatalysts based on particle size (250 and 350 nm) and mass loading. With the smaller size of 250 nm, Pt0.5Rh0.5 (∼50 µg cm-2) shows a high activity of 1629 A gPtRh-1 (2488 A gPt-1) in a 0.5 M KOH-containing electrolyte, which is ∼50% higher than the most active binary catalysts to date. Moreover, a higher C1-pathway Faradaic efficiency (FE) of 38.3% and 80% longer durability are achieved with a 2-fold increase in mass loading. In the more porous electrodes, a local acidic environment created by hindered OH- mass transport better optimizes OHads coverage, providing more active sites for the desired C1-pathway and a continuous EOR.

2.
Chem Sci ; 12(38): 12847-12849, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34703572

RESUMEN

[This corrects the article DOI: 10.1039/D1SC02413B.].

3.
Chem Sci ; 12(37): 12365-12376, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34603666

RESUMEN

Although electrocarboxylation reactions use CO2 as a renewable synthon and can incorporate renewable electricity as a driving force, the overall sustainability and practicality of this process is limited by the use of sacrificial anodes such as magnesium and aluminum. Replacing these anodes for the carboxylation of organic halides is not trivial because the cations produced from their oxidation inhibit a variety of undesired nucleophilic reactions that form esters, carbonates, and alcohols. Herein, a strategy to maintain selectivity without a sacrificial anode is developed by adding a salt with an inorganic cation that blocks nucleophilic reactions. Using anhydrous MgBr2 as a low-cost, soluble source of Mg2+ cations, carboxylation of a variety of aliphatic, benzylic, and aromatic halides was achieved with moderate to good (34-78%) yields without a sacrificial anode. Moreover, the yields from the sacrificial-anode-free process were often comparable or better than those from a traditional sacrificial-anode process. Examining a wide variety of substrates shows a correlation between known nucleophilic susceptibilities of carbon-halide bonds and selectivity loss in the absence of a Mg2+ source. The carboxylate anion product was also discovered to mitigate cathodic passivation by insoluble carbonates produced as byproducts from concomitant CO2 reduction to CO, although this protection can eventually become insufficient when sacrificial anodes are used. These results are a key step toward sustainable and practical carboxylation by providing an electrolyte design guideline to obviate the need for sacrificial anodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA