Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 184(12): 3125-3142.e25, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33930289

RESUMEN

The N6-methyladenosine (m6A) RNA modification is used widely to alter the fate of mRNAs. Here we demonstrate that the C. elegans writer METT-10 (the ortholog of mouse METTL16) deposits an m6A mark on the 3' splice site (AG) of the S-adenosylmethionine (SAM) synthetase pre-mRNA, which inhibits its proper splicing and protein production. The mechanism is triggered by a rich diet and acts as an m6A-mediated switch to stop SAM production and regulate its homeostasis. Although the mammalian SAM synthetase pre-mRNA is not regulated via this mechanism, we show that splicing inhibition by 3' splice site m6A is conserved in mammals. The modification functions by physically preventing the essential splicing factor U2AF35 from recognizing the 3' splice site. We propose that use of splice-site m6A is an ancient mechanism for splicing regulation.


Asunto(s)
Adenosina/análogos & derivados , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Factor de Empalme U2AF/metabolismo , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Secuencia Conservada/genética , Dieta , Células HeLa , Humanos , Intrones/genética , Metionina Adenosiltransferasa , Metilación , Metiltransferasas/química , Ratones , Mutación/genética , Conformación de Ácido Nucleico , Unión Proteica , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Nuclear Pequeño , S-Adenosilmetionina , Transcriptoma/genética
2.
Semin Cell Dev Biol ; 127: 133-141, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34823984

RESUMEN

Epigenetic inheritance refers to the transmission of phenotypes across generations without affecting the genomic DNA sequence. Even though it has been documented in many species in fungi, animals and plants, the mechanisms underlying epigenetic inheritance are not fully uncovered. Epialleles, the heritable units of epigenetic information, can take the form of several biomolecules, including histones and their post-translational modifications (PTMs). Here, we review the recent advances in the understanding of the transmission of histone variants and histone PTM patterns across generations in C. elegans. We provide a general overview of the intergenerational and transgenerational inheritance of histone PTMs and their modifiers and discuss the interplay among different histone PTMs. We also evaluate soma-germ line communication and its impact on the inheritance of epigenetic traits.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/genética , Epigénesis Genética/genética , Histonas/genética , Histonas/metabolismo , Patrón de Herencia
3.
PLoS Biol ; 19(7): e3000968, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34228701

RESUMEN

Centromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes, CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is reestablished on chromatin during diplotene of meiosis I. Here, we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but then its presence becomes dispensable for centromere maintenance during development. Worms homozygous for a CENP-A tail deletion maintain functional centromeres during development but give rise to inviable offspring because they fail to reestablish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2 and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Proteína A Centromérica/genética , Centrómero , Impresión Genómica , Células Germinativas , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteína A Centromérica/química , Proteína A Centromérica/metabolismo , Cromatina/metabolismo , Cromosomas , Femenino , Homocigoto , Cinetocoros , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Dominios Proteicos
4.
PLoS Genet ; 17(11): e1009873, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34748562

RESUMEN

Transcription of the human mitochondrial genome and correct processing of the two long polycistronic transcripts are crucial for oxidative phosphorylation. According to the tRNA punctuation model, nucleolytic processing of these large precursor transcripts occurs mainly through the excision of the tRNAs that flank most rRNAs and mRNAs. However, some mRNAs are not punctuated by tRNAs, and it remains largely unknown how these non-canonical junctions are resolved. The FASTK family proteins are emerging as key players in non-canonical RNA processing. Here, we have generated human cell lines carrying single or combined knockouts of several FASTK family members to investigate their roles in non-canonical RNA processing. The most striking phenotypes were obtained with loss of FASTKD4 and FASTKD5 and with their combined double knockout. Comprehensive mitochondrial transcriptome analyses of these cell lines revealed a defect in processing at several canonical and non-canonical RNA junctions, accompanied by an increase in specific antisense transcripts. Loss of FASTKD5 led to the most severe phenotype with marked defects in mitochondrial translation of key components of the electron transport chain complexes and in oxidative phosphorylation. We reveal that the FASTK protein family members are crucial regulators of non-canonical junction and non-coding mitochondrial RNA processing.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular , Técnicas de Inactivación de Genes , Humanos , Proteínas Mitocondriales/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Transcriptoma
5.
Mol Biol Evol ; 39(10)2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36173809

RESUMEN

Centromeric histones (CenH3s) are essential for chromosome inheritance during cell division in most eukaryotes. CenH3 genes have rapidly evolved and undergone repeated gene duplications and diversification in many plant and animal species. In Caenorhabditis species, two independent duplications of CenH3 (named hcp-3 for HoloCentric chromosome-binding Protein 3) were previously identified in C. elegans and C. remanei. Using phylogenomic analyses in 32 Caenorhabditis species, we find strict retention of the ancestral hcp-3 gene and 10 independent duplications. Most hcp-3L (hcp-3-like) paralogs are only found in 1-2 species, are expressed in both males and females/hermaphrodites, and encode histone fold domains with 69-100% identity to ancestral hcp-3. We identified novel N-terminal protein motifs, including putative kinetochore protein-interacting motifs and a potential separase cleavage site, which are well conserved across Caenorhabditis HCP-3 proteins. Other N-terminal motifs vary in their retention across paralogs or species, revealing potential subfunctionalization or functional loss following duplication. An N-terminal extension in the hcp-3L gene of C. afra revealed an unprecedented protein fusion, where hcp-3L fused to duplicated segments from hcp-4 (nematode CENP-C). By extending our analyses beyond CenH3, we found gene duplications of six inner and outer kinetochore genes in Caenorhabditis, which appear to have been retained independent of hcp-3 duplications. Our findings suggest that centromeric protein duplications occur frequently in Caenorhabditis nematodes, are selectively retained for short evolutionary periods, then degenerate or are lost entirely. We hypothesize that unique challenges associated with holocentricity in Caenorhabditis may lead to this rapid "revolving door" of kinetochore protein paralogs.


Asunto(s)
Caenorhabditis elegans , Caenorhabditis , Animales , Caenorhabditis/genética , Caenorhabditis/metabolismo , Caenorhabditis elegans/genética , Centrómero/genética , Centrómero/metabolismo , Histonas/metabolismo , Masculino , Separasa/genética , Separasa/metabolismo
6.
J Cell Sci ; 134(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34734636

RESUMEN

Centromeres are chromosomal regions that serve as sites for kinetochore formation and microtubule attachment, processes that are essential for chromosome segregation during mitosis. Centromeres are almost universally defined by the histone variant CENP-A. In the holocentric nematode C. elegans, CENP-A deposition depends on the loading factor KNL-2. Depletion of either CENP-A or KNL-2 results in defects in centromere maintenance, chromosome condensation and kinetochore formation, leading to chromosome segregation failure. Here, we show that KNL-2 is phosphorylated by CDK-1 in vitro, and that mutation of three C-terminal phosphorylation sites causes chromosome segregation defects and an increase in embryonic lethality. In strains expressing phosphodeficient KNL-2, CENP-A and kinetochore proteins are properly localised, indicating that the role of KNL-2 in centromere maintenance is not affected. Instead, the mutant embryos exhibit reduced mitotic levels of condensin II on chromosomes and significant chromosome condensation impairment. Our findings separate the functions of KNL-2 in CENP-A loading and chromosome condensation, and demonstrate that KNL-2 phosphorylation regulates the cooperation between centromeric regions and the condensation machinery in C. elegans. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Humanos , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Fosforilación
7.
Genome Res ; 30(12): 1740-1751, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33172964

RESUMEN

Histone H3.3 is a replication-independent variant of histone H3 with important roles in development, differentiation, and fertility. Here, we show that loss of H3.3 results in replication defects in Caenorhabditis elegans embryos at elevated temperatures. To characterize these defects, we adapt methods to determine replication timing, map replication origins, and examine replication fork progression. Our analysis of the spatiotemporal regulation of DNA replication shows that despite the very rapid embryonic cell cycle, the genome is replicated from early and late firing origins and is partitioned into domains of early and late replication. We find that under temperature stress conditions, additional replication origins become activated. Moreover, loss of H3.3 results in altered replication fork progression around origins, which is particularly evident at stress-activated origins. These replication defects are accompanied by replication checkpoint activation, a delayed cell cycle, and increased lethality in checkpoint-compromised embryos. Our comprehensive analysis of DNA replication in C. elegans reveals the genomic location of replication origins and the dynamics of their firing, and uncovers a role of H3.3 in the regulation of replication origins under stress conditions.


Asunto(s)
Caenorhabditis elegans/embriología , Replicación del ADN , Histonas/genética , Mutación con Pérdida de Función , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Momento de Replicación del ADN , Histonas/metabolismo , Origen de Réplica , Estrés Fisiológico
8.
Chromosoma ; 126(4): 443-455, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27858158

RESUMEN

The centromere is essential for the segregation of chromosomes, as it serves as attachment site for microtubules to mediate chromosome segregation during mitosis and meiosis. In most organisms, the centromere is restricted to one chromosomal region that appears as primary constriction on the condensed chromosome and is partitioned into two chromatin domains: The centromere core is characterized by the centromere-specific histone H3 variant CENP-A (also called cenH3) and is required for specifying the centromere and for building the kinetochore complex during mitosis. This core region is generally flanked by pericentric heterochromatin, characterized by nucleosomes containing H3 methylated on lysine 9 (H3K9me) that are bound by heterochromatin proteins. During mitosis, these two domains together form a three-dimensional structure that exposes CENP-A-containing chromatin to the surface for interaction with the kinetochore and microtubules. At the same time, this structure supports the tension generated during the segregation of sister chromatids to opposite poles. In this review, we discuss recent insight into the characteristics of the centromere, from the specialized chromatin structures at the centromere core and the pericentromere to the three-dimensional organization of these regions that make up the functional centromere.


Asunto(s)
Centrómero/química , Cromatina/química , Nucleosomas/química , Animales , Centrómero/fisiología , Cromatina/fisiología , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Heterocromatina/química , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Nucleosomas/fisiología
9.
Genesis ; 54(4): 160-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26789661

RESUMEN

The development of a multicellular organism from a single zygote depends on the differentiation of progenitor cells to specialized cell types. The differentiation of these cell types is associated with changes in gene expression and the underlying chromatin landscape. To understand how these processes are regulated, it is desirable to understand how the chromatin features that constitute the epigenome differ between cell types at any given time during development. INTACT, a method for the cell type-specific purification of nuclei that can be used for the isolation of both RNA and chromatin, has emerged as a powerful tool to simultaneously study gene expression and chromatin profiles specifically in cell types of interest. In this review, we focus on the application of INTACT to different model organisms and discuss its potential for profiling cell types in their developmental context.


Asunto(s)
Cromatina/aislamiento & purificación , Epigenómica/métodos , ARN/aislamiento & purificación , Animales , Perfilación de la Expresión Génica , Modelos Biológicos , Especificidad de Órganos , Células Vegetales/metabolismo
10.
Genome Res ; 22(4): 766-77, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22219512

RESUMEN

An understanding of developmental processes requires knowledge of transcriptional and epigenetic landscapes at the level of tissues and ultimately individual cells. However, obtaining tissue- or cell-type-specific expression and chromatin profiles for animals has been challenging. Here we describe a method for purifying nuclei from specific cell types of animal models that allows simultaneous determination of both expression and chromatin profiles. The method is based on in vivo biotin-labeling of the nuclear envelope and subsequent affinity purification of nuclei. We describe the use of the method to isolate nuclei from muscle of adult Caenorhabditis elegans and from mesoderm of Drosophila melanogaster embryos. As a case study, we determined expression and nucleosome occupancy profiles for affinity-purified nuclei from C. elegans muscle. We identified hundreds of genes that are specifically expressed in muscle tissues and found that these genes are depleted of nucleosomes at promoters and gene bodies in muscle relative to other tissues. This method should be universally applicable to all model systems that allow transgenesis and will make it possible to determine epigenetic and expression profiles of different tissues and cell types.


Asunto(s)
Núcleo Celular/genética , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Microscopía Fluorescente , Desarrollo de Músculos/genética , Músculos/citología , Músculos/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo
11.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38774216

RESUMEN

Visualization of organelles using expansion microscopy has been previously applied to Caenorhadbitis elegans adult gonads or worms. However, its application to embryos has remained a challenge due to the protective eggshell barrier. Here, by combining freeze-cracking and ultrastructure expansion microscopy (U-ExM), we demonstrate a four-time isotropic expansion of C. elegans embryos. As an example structure, we chose the nuclear pore and demonstrate that we achieve sufficient resolution to distinguish them individually. Our work provides proof of principle for U-ExM in C. elegans embryos, which will be applicable for imaging a wide range of cellular structures in this model system.

12.
PLoS Genet ; 6(4): e1000903, 2010 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-20386745

RESUMEN

RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.


Asunto(s)
Caenorhabditis elegans/genética , MicroARNs/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
13.
Nat Struct Mol Biol ; 14(10): 927-33, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17891148

RESUMEN

In C. elegans, DCR-1 is required for the maturation of both short interfering RNAs (siRNAs) and microRNAs (miRNAs), which are subsequently loaded into different Argonaute proteins to mediate silencing via distinct mechanisms. We used in vivo analyses to show that precursors of small RNAs contain structural features that direct the small RNAs into the RNA interference (RNAi) pathway or the miRNA-processing pathway. Nucleotide changes in the pre-let-7 miRNA precursor that make its stem fully complementary cause the resulting small RNA to be recognized as siRNA and induce binding to RDE-1, which leads to RNAi. Mismatches of 1 to 3 nucleotides at various positions in the stem of the precursor restore direction into the miRNA pathway, as the largest portion of such small RNA variants is associated with ALG-1. The Argonaute proteins to which the small RNAs are bound determine the silencing mode, and no functional overlap between RDE-1 and ALG-1 was detected.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Conformación de Ácido Nucleico , Interferencia de ARN , Precursores del ARN/química , Precursores del ARN/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Silenciador del Gen , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Precursores del ARN/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III
14.
Essays Biochem ; 64(2): 193-203, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32406496

RESUMEN

The aim of mitosis is to segregate duplicated chromosomes equally into daughter cells during cell division. Meiosis serves a similar purpose, but additionally separates homologous chromosomes to produce haploid gametes for sexual reproduction. Both mitosis and meiosis rely on centromeres for the segregation of chromosomes. Centromeres are the specialized regions of the chromosomes that are attached to microtubules during their segregation. In this review, we describe the adaptations and layers of regulation that are required for centromere function during meiosis, and their role in meiosis-specific processes such as homolog-pairing and recombination. Since female meiotic divisions are asymmetric, meiotic centromeres are hypothesized to evolve quickly in order to favor their own transmission to the offspring, resulting in the rapid evolution of many centromeric proteins. We discuss this observation using the example of the histone variant CENP-A, which marks the centromere and is essential for centromere function. Changes in both the size and the sequence of the CENP-A N-terminal tail have led to additional functions of the protein, which are likely related to its roles during meiosis. We highlight the importance of CENP-A in the inheritance of centromere identity, which is dependent on the stabilization, recycling, or re-establishment of CENP-A-containing chromatin during meiosis.


Asunto(s)
Proteína A Centromérica/fisiología , Centrómero/fisiología , Meiosis , Animales , Femenino , Humanos , Masculino , Plantas
15.
Nat Commun ; 10(1): 2529, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31175278

RESUMEN

Substitution of lysine 27 with methionine in histone H3.3 is a recently discovered driver mutation of pediatric high-grade gliomas. Mutant cells show decreased levels and altered distribution of H3K27 trimethylation (H3K27me3). How these chromatin changes are established genome-wide and lead to tumorigenesis remains unclear. Here we show that H3.3K27M-mediated alterations in H3K27me3 distribution result in ectopic DNA replication and cell cycle progression of germ cells in Caenorhabditis elegans. By genetically inducing changes in the H3.3 distribution, we demonstrate that both H3.3K27M and pre-existing H3K27me3 act locally and antagonistically on Polycomb Repressive Complex 2 (PRC2) in a concentration-dependent manner. The heterochromatin changes result in extensive gene misregulation, and genetic screening identified upregulation of JNK as an underlying cause of the germcell aberrations. Moreover, JNK inhibition suppresses the replicative fate in human tumor-derived H3.3K27M cells, thus establishing C. elegans as a powerful model for the identification of potential drug targets for treatment of H3.3K27M tumors.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Replicación del ADN , Regulación de la Expresión Génica , Histonas/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Neoplasias Encefálicas , Caenorhabditis elegans , Carcinogénesis , Cromatina , Regulación Neoplásica de la Expresión Génica , Células Germinativas/metabolismo , Glioma , Heterocromatina , Código de Histonas , Metilación , Complejo Represivo Polycomb 2/metabolismo
16.
Nucleic Acids Res ; 34(9): 2558-69, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16698962

RESUMEN

MicroRNAs (miRNAs) play an important role in development and regulate the expression of many animal genes by post-transcriptional gene silencing. Here we describe the cloning and expression of new miRNAs from zebrafish. By high-throughput sequencing of small-RNA cDNA libraries from 5-day-old zebrafish larvae and adult zebrafish brain we found 139 known miRNAs and 66 new miRNAs. For 65 known miRNAs and for 11 new miRNAs we also cloned the miRNA star sequence. We analyzed the temporal and spatial expression patterns for 35 new miRNAs and for 32 known miRNAs in the zebrafish by whole mount in situ hybridization and northern blotting. Overall, 23 of the 35 new miRNAs and 30 of the 32 known miRNAs could be detected. We found that most miRNAs were expressed during later stages of development. Some were expressed ubiquitously, but many of the miRNAs were expressed in a tissue-specific manner. Most newly discovered miRNAs have low expression levels and are less conserved in other vertebrate species. Our cloning and expression analysis indicates that most abundant and conserved miRNAs in zebrafish are now known.


Asunto(s)
MicroARNs/genética , Pez Cebra/genética , Animales , Northern Blotting , Clonación Molecular , Expresión Génica , Hibridación in Situ , MicroARNs/análisis , MicroARNs/metabolismo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo
17.
Genetics ; 209(2): 551-565, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29636369

RESUMEN

Replication-independent variant histones replace canonical histones in nucleosomes and act as important regulators of chromatin function. H3.3 is a major variant of histone H3 that is remarkably conserved across taxa and is distinguished from canonical H3 by just four key amino acids. Most genomes contain two or more genes expressing H3.3, and complete loss of the protein usually causes sterility or embryonic lethality. Here, we investigate the developmental expression patterns of the five Caenorhabditis elegans H3.3 homologs and identify two previously uncharacterized homologs to be restricted to the germ line. Despite these specific expression patterns, we find that neither loss of individual H3.3 homologs nor the knockout of all five H3.3-coding genes causes sterility or lethality. However, we demonstrate an essential role for the conserved histone chaperone HIRA in the nucleosomal loading of all H3.3 variants. This requirement can be bypassed by mutation of the H3.3-specific residues to those found in H3. While even removal of all H3.3 homologs does not result in lethality, it leads to reduced fertility and viability in response to high-temperature stress. Thus, our results show that H3.3 is nonessential in C. elegans but is critical for ensuring adequate response to stress.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Respuesta al Choque Térmico , Histonas/metabolismo , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/citología , Células Germinativas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Infertilidad/genética , Nucleosomas/metabolismo
18.
Curr Opin Genet Dev ; 31: 28-35, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25956076

RESUMEN

Centromeric chromatin is distinguished primarily by nucleosomes containing the histone variant cenH3, which organizes the kinetochore that links the chromosome to the spindle apparatus. Whereas budding yeast have simple 'point' centromeres with single cenH3 nucleosomes, and fission yeast have 'regional' centromeres without obvious sequence specificity, the centromeres of most organisms are embedded in highly repetitive 'satellite' DNA. Recent studies have revealed a remarkable diversity in centromere chromatin organization among different lineages, including some that have lost cenH3 altogether. We review recent progress in understanding point, regional and satellite centromeres, as well as less well-studied centromere types, such as holocentromeres. We also discuss the formation of neocentromeres, the role of pericentric heterochromatin, and the structure and composition of the cenH3 nucleosome.


Asunto(s)
Centrómero/química , Cromatina/química , Animales , Centrómero/genética , Centrómero/metabolismo , Cromatina/metabolismo , Humanos , Nucleosomas/química , Nucleosomas/metabolismo , Saccharomycetales
19.
Methods Mol Biol ; 1228: 3-14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25311117

RESUMEN

Analyzing cell differentiation during development in a complex organism requires the analysis of expression and chromatin profiles in individual cell types. Our laboratory has developed a simple and generally applicable strategy to purify specific cell types from whole organisms for simultaneous analysis of chromatin and expression. The method, termed INTACT for Isolation of Nuclei TAgged in specific Cell Types, depends on the expression of an affinity-tagged nuclear envelope protein in the cell type of interest. These nuclei can be affinity-purified from the total pool of nuclei and used as a source for RNA and chromatin. The method serves as a simple and scalable alternative to FACS sorting or laser capture microscopy to circumvent the need for expensive equipment and specialized skills. This chapter provides detailed protocols for the cell-type specific purification of nuclei from Caenorhabditis elegans.


Asunto(s)
Fraccionamiento Celular/métodos , Núcleo Celular/genética , Cromatina/genética , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Especificidad de Órganos , Control de Calidad , Técnicas de Cultivo de Tejidos , Fijación del Tejido
20.
Science ; 370(6519): 921, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33214285
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA