Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Expo Sci Environ Epidemiol ; 33(3): 339-346, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36424424

RESUMEN

BACKGROUND: Several studies suggest that far-field transmission (>6 ft) explains a significant number of COVID-19 superspreading outbreaks. OBJECTIVE: Therefore, quantifying the ratio of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. METHODS: In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 0.76 m (2.5 ft), 1.52 m (5 ft), 2.28 m (7.5 ft) from the participant, as well as in the exhaust plenum of the chamber. RESULTS: We observed that 0.76 m (2.5 ft) trials had ~36-44% higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field exposure relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 0.76 m, 1.52 m, and 2.28 m were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. SIGNIFICANCE: This study suggests that for rooms with similar airflow parameters disease transmission risk is dominated by near-field exposures for shorter event durations (e.g., initial 20-25-minutes of event) whereas far-field exposures are critical throughout the entire event and are increasingly more important for longer event durations. IMPACT STATEMENT: We offer a novel methodology for studying the fate and transport of airborne bioaerosols in indoor spaces using VOCs as unique proxies for bioaerosols. We provide evidence that real-time measurement of VOCs can be applied in settings with human subjects to estimate the concentration of bioaerosol at different distances from the emitter. We also improve upon the conventional assumption that a well-mixed room exhibits instantaneous and perfect mixing by addressing spatial distances and mixing over time. We quantitatively assessed the exposure levels to breath tracers at alternate distances and provided more insights into the changes on "near-field to far-field" ratios over time. This method can be used in future to estimate the benefits of alternate environmental conditions and occupant behaviors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Transmisión de Enfermedad Infecciosa , Contaminantes Atmosféricos/análisis , Pruebas Respiratorias , Compuestos Orgánicos Volátiles , Aerosoles
2.
Res Sq ; 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35291299

RESUMEN

Several studies suggest that far-field transmission (> 6 ft) explains the significant number of COVID-19 superspreading outbreaks. Therefore, quantitative evaluation of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 2.5 ft, 5 ft, 7.5 ft from the participant, as well as in the exhaust plenum of the chamber. We observed that 2.5 ft trials had substantially (~36-44%) higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 2.5 ft, 5 ft, and 7.5 ft were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. Our findings highlight the importance of far-field transmission of airborne pathogens including SARS-CoV-2, which need to be considered in public health decision making.

3.
PLoS One ; 16(11): e0257689, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34780482

RESUMEN

The worldwide spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has ubiquitously impacted many aspects of life. As vaccines continue to be manufactured and administered, limiting the spread of SARS-CoV-2 will rely more heavily on the early identification of contagious individuals occupying reopened and increasingly populated indoor environments. In this study, we investigated the utility of an impaction-based bioaerosol sampling system with multiple nucleic acid collection media. Heat-inactivated SARS-CoV-2 was utilized to perform bench-scale, short-range aerosol, and room-scale aerosol experiments. Through bench-scale experiments, AerosolSense Capture Media (ACM) and nylon flocked swabs were identified as the highest utility media. In room-scale aerosol experiments, consistent detection of aerosol SARS-CoV-2 was achieved at an estimated aerosol concentration equal to or greater than 0.089 genome copies per liter of room air (gc/L) when air was sampled for eight hours or more at less than one air change per hour (ACH). Shorter sampling periods (75 minutes) yielded consistent detection at ~31.8 gc/L of room air and intermittent detection down to ~0.318 gc/L at (at both 1 and 6 ACH). These results support further exploration in real-world testing scenarios and suggest the utility of indoor aerosol surveillance as an effective risk mitigation strategy in occupied buildings.


Asunto(s)
Aerosoles/análisis , COVID-19/diagnóstico , COVID-19/virología , Monitoreo del Ambiente , SARS-CoV-2/fisiología , Genoma Viral , Humanos , ARN Viral/genética , SARS-CoV-2/genética
4.
Microbiome ; 4: 6, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26880354

RESUMEN

Architects are enthusiastic about "bioinformed design" as occupant well-being is a primary measure of architectural success. However, architects are also under mounting pressure to create more sustainable buildings. Scientists have a critical opportunity to make the emerging field of microbiology of the built environment more relevant and applicable to real-world design problems by addressing health and sustainability in tandem. Practice-based research, which complements evidence-based design, represents a promising approach to advancing knowledge of the indoor microbiome and translating it to architectural practice.


Asunto(s)
Microbiología del Aire , Arquitectura/métodos , Microbiota/fisiología , Industria de la Construcción , Planificación Ambiental , Humanos , Calidad de Vida
5.
PeerJ ; 3: e1258, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26417541

RESUMEN

Dispersal of microbes between humans and the built environment can occur through direct contact with surfaces or through airborne release; the latter mechanism remains poorly understood. Humans emit upwards of 10(6) biological particles per hour, and have long been known to transmit pathogens to other individuals and to indoor surfaces. However it has not previously been demonstrated that humans emit a detectible microbial cloud into surrounding indoor air, nor whether such clouds are sufficiently differentiated to allow the identification of individual occupants. We used high-throughput sequencing of 16S rRNA genes to characterize the airborne bacterial contribution of a single person sitting in a sanitized custom experimental climate chamber. We compared that to air sampled in an adjacent, identical, unoccupied chamber, as well as to supply and exhaust air sources. Additionally, we assessed microbial communities in settled particles surrounding each occupant, to investigate the potential long-term fate of airborne microbial emissions. Most occupants could be clearly detected by their airborne bacterial emissions, as well as their contribution to settled particles, within 1.5-4 h. Bacterial clouds from the occupants were statistically distinct, allowing the identification of some individual occupants. Our results confirm that an occupied space is microbially distinct from an unoccupied one, and demonstrate for the first time that individuals release their own personalized microbial cloud.

6.
ISME J ; 6(8): 1469-79, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22278670

RESUMEN

Buildings are complex ecosystems that house trillions of microorganisms interacting with each other, with humans and with their environment. Understanding the ecological and evolutionary processes that determine the diversity and composition of the built environment microbiome--the community of microorganisms that live indoors--is important for understanding the relationship between building design, biodiversity and human health. In this study, we used high-throughput sequencing of the bacterial 16S rRNA gene to quantify relationships between building attributes and airborne bacterial communities at a health-care facility. We quantified airborne bacterial community structure and environmental conditions in patient rooms exposed to mechanical or window ventilation and in outdoor air. The phylogenetic diversity of airborne bacterial communities was lower indoors than outdoors, and mechanically ventilated rooms contained less diverse microbial communities than did window-ventilated rooms. Bacterial communities in indoor environments contained many taxa that are absent or rare outdoors, including taxa closely related to potential human pathogens. Building attributes, specifically the source of ventilation air, airflow rates, relative humidity and temperature, were correlated with the diversity and composition of indoor bacterial communities. The relative abundance of bacteria closely related to human pathogens was higher indoors than outdoors, and higher in rooms with lower airflow rates and lower relative humidity. The observed relationship between building design and airborne bacterial diversity suggests that we can manage indoor environments, altering through building design and operation the community of microbial species that potentially colonize the human microbiome during our time indoors.


Asunto(s)
Arquitectura , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Metagenoma , Bacterias/clasificación , Bacterias/genética , Microbiología Ambiental , Hospitales , Humedad , Filogenia , Temperatura , Ventilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA