Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Mol Cell ; 82(22): 4262-4276.e5, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36347258

RESUMEN

BRAF is frequently mutated in human cancer and the RASopathy syndromes, with RASopathy mutations often observed in the cysteine-rich domain (CRD). Although the CRD participates in phosphatidylserine (PS) binding, the RAS-RAF interaction, and RAF autoinhibition, the impact of these activities on RAF function in normal and disease states is not well characterized. Here, we analyze a panel of CRD mutations and show that they increase BRAF activity by relieving autoinhibition and/or enhancing PS binding, with relief of autoinhibition being the major factor determining mutation severity. Further, we show that CRD-mediated autoinhibition prevents the constitutive plasma membrane localization of BRAF that causes increased RAS-dependent and RAS-independent function. Comparison of the BRAF- and CRAF-CRDs also indicates that the BRAF-CRD is a stronger mediator of autoinhibition and PS binding, and given the increased catalytic activity of BRAF, our studies reveal a more critical role for CRD-mediated autoinhibition in BRAF regulation.


Asunto(s)
Cisteína , Proteínas Proto-Oncogénicas B-raf , Humanos , Cisteína/genética , Proteínas Proto-Oncogénicas B-raf/genética , Dominios Proteicos , Mutación , Síndrome
2.
J Biol Chem ; 300(2): 105650, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237681

RESUMEN

Individual oncogenic KRAS mutants confer distinct differences in biochemical properties and signaling for reasons that are not well understood. KRAS activity is closely coupled to protein dynamics and is regulated through two interconverting conformations: state 1 (inactive, effector binding deficient) and state 2 (active, effector binding enabled). Here, we use 31P NMR to delineate the differences in state 1 and state 2 populations present in WT and common KRAS oncogenic mutants (G12C, G12D, G12V, G13D, and Q61L) bound to its natural substrate GTP or a commonly used nonhydrolyzable analog GppNHp (guanosine-5'-[(ß,γ)-imido] triphosphate). Our results show that GppNHp-bound proteins exhibit significant state 1 population, whereas GTP-bound KRAS is primarily (90% or more) in state 2 conformation. This observation suggests that the predominance of state 1 shown here and in other studies is related to GppNHp and is most likely nonexistent in cells. We characterize the impact of this differential conformational equilibrium of oncogenic KRAS on RAF1 kinase effector RAS-binding domain and intrinsic hydrolysis. Through a KRAS G12C drug discovery, we have identified a novel small-molecule inhibitor, BBO-8956, which is effective against both GDP- and GTP-bound KRAS G12C. We show that binding of this inhibitor significantly perturbs state 1-state 2 equilibrium and induces an inactive state 1 conformation in GTP-bound KRAS G12C. In the presence of BBO-8956, RAF1-RAS-binding domain is unable to induce a signaling competent state 2 conformation within the ternary complex, demonstrating the mechanism of action for this novel and active-conformation inhibitor.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas ras/metabolismo , Guanosina Trifosfato/metabolismo , Espectroscopía de Resonancia Magnética , Transducción de Señal , Mutación
3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983849

RESUMEN

RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.


Asunto(s)
Membrana Celular/enzimología , Lípidos/química , Aprendizaje Automático , Simulación de Dinámica Molecular , Multimerización de Proteína , Proteínas Proto-Oncogénicas p21(ras)/química , Transducción de Señal , Humanos
4.
Anal Chem ; 96(13): 5223-5231, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498381

RESUMEN

Development of new targeted inhibitors for oncogenic KRAS mutants may benefit from insight into how a given mutation influences the accessibility of protein residues and how compounds interact with mutant or wild-type KRAS proteins. Targeted proteomic analysis, a key validation step in the KRAS inhibitor development process, typically involves both intact mass- and peptide-based methods to confirm compound localization or quantify binding. However, these methods may not always provide a clear picture of the compound binding affinity for KRAS, how specific the compound is to the target KRAS residue, and how experimental conditions may impact these factors. To address this, we have developed a novel top-down proteomic assay to evaluate in vitro KRAS4B-compound engagement while assessing relative quantitation in parallel. We present two applications to demonstrate the capabilities of our assay: maleimide-biotin labeling of a KRAS4BG12D cysteine mutant panel and treatment of three KRAS4B proteins (WT, G12C, and G13C) with small molecule compounds. Our results show the time- or concentration-dependence of KRAS4B-compound engagement in context of the intact protein molecule while directly mapping the compound binding site.


Asunto(s)
Proteómica , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Sitios de Unión
5.
Mol Cell ; 64(5): 875-887, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889448

RESUMEN

Ras pathway signaling plays a critical role in cell growth control and is often upregulated in human cancer. The Raf kinases selectively interact with GTP-bound Ras and are important effectors of Ras signaling, functioning as the initiating kinases in the ERK cascade. Here, we identify a route for the phospho-inhibition of Ras/Raf/MEK/ERK pathway signaling that is mediated by the stress-activated JNK cascade. We find that key Ras pathway components, the RasGEF Sos1 and the Rafs, are phosphorylated on multiple S/TP sites in response to JNK activation and that the hyperphosphorylation of these sites renders the Rafs and Sos1 unresponsive to upstream signals. This phospho-regulatory circuit is engaged by cancer therapeutics, such as rigosertib and paclitaxel/Taxol, that activate JNK through mitotic and oxidative stress as well as by physiological regulators of the JNK cascade and may function as a signaling checkpoint to suppress the Ras pathway during conditions of cellular stress.


Asunto(s)
Glicina/análogos & derivados , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Paclitaxel , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Sulfonas , Activación Enzimática/efectos de los fármacos , Glicina/farmacocinética , Glicina/farmacología , Células HeLa , Humanos , Estrés Oxidativo , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Fosforilación , Sulfonas/farmacocinética , Sulfonas/farmacología , Proteínas ras/metabolismo
6.
Biochem Biophys Res Commun ; 678: 122-127, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37633182

RESUMEN

KRas4b is a membrane-bound regulatory protein belonging to the family of small GTPases that function as a molecular switch, facilitating signal transduction from activated membrane receptors to intracellular pathways controlling cell growth and proliferation. Oncogenic mutations locking KRas4b in the active GTP state are responsible for nearly 85% of all Ras-driven cancers. Understanding the membrane-bound state of KRas4b is crucial for designing new therapeutic approaches targeting oncogenic KRas-driven signaling pathways. Extensive research demonstrates the significant involvement of the membrane bilayer in Ras-effector interactions, with anionic lipids playing a critical role in determining protein conformations The preferred topology of KRas4b for interacting with signaling partners has been a long-time question. Computational studies suggest a membrane-proximal conformation, while other biophysical methods like neutron reflectivity propose a membrane-distal conformation. To address these gaps, we employed FRET measurements to investigate the conformation of KRas4b. Using fully post-translationally modified KRas4b, we designed a Nanodisc based FRET assay to study KRas4b-membrane interactions. We suggest an extended conformation of KRas4b relative to the membrane surface. Measurement of FRET donor - acceptor distances reveal that a negatively charged membrane surface weakly favors closer association with the membrane surface. Our findings provide insights into the role of anionic lipids in determining the dynamic conformations of KRas4b and shed light on the predominant conformation of its topology on lipid headgroups.


Asunto(s)
Bioensayo , Lípidos , Biofisica , Ciclo Celular , Proliferación Celular
7.
Proc Natl Acad Sci U S A ; 117(39): 24258-24268, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32913056

RESUMEN

The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling. We combined multiple biophysical measurements and computational methodologies to generate a consensus model for authentically processed, membrane-anchored KRAS. In contrast to the two membrane-proximal conformations previously reported, we identify a third significantly populated state using a combination of neutron reflectivity, fast photochemical oxidation of proteins (FPOP), and NMR. In this highly populated state, which we refer to as "membrane-distal" and estimate to comprise ∼90% of the ensemble, the G-domain does not directly contact the membrane but is tethered via its C-terminal hypervariable region and carboxymethylated farnesyl moiety, as shown by FPOP. Subsequent interaction of the RAF1 RAS binding domain with KRAS does not significantly change G-domain configurations on the membrane but affects their relative populations. Overall, our results are consistent with a directional fly-casting mechanism for KRAS, in which the membrane-distal state of the G-domain can effectively recruit RAF kinase from the cytoplasm for activation at the membrane.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Quinasas raf/metabolismo , Membrana Celular/metabolismo , Simulación de Dinámica Molecular
8.
Biophys J ; 121(19): 3630-3650, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35778842

RESUMEN

During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3-5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.


Asunto(s)
Cisteína , Proteínas Proto-Oncogénicas c-raf , Sitios de Unión , Membrana Celular/metabolismo , Cisteína/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Solventes/metabolismo
9.
J Nat Prod ; 85(6): 1603-1616, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35696348

RESUMEN

Seven new peptaibols named tolypocladamides A-G have been isolated from an extract of the fungus Tolypocladium inflatum, which inhibits the interaction between Raf and oncogenic Ras in a cell-based high-throughput screening assay. Each peptaibol contains 11 amino acid residues, an octanoyl or decanoyl fatty acid chain at the N-terminus, and a leucinol moiety at the C-terminus. The peptaibol sequences were elucidated on the basis of 2D NMR and mass spectral fragmentation analyses. Amino acid configurations were determined by advanced Marfey's analyses. Tolypocladamides A-G caused significant inhibition of Ras/Raf interactions with IC50 values ranging from 0.5 to 5.0 µM in a nanobioluminescence resonance energy transfer (NanoBRET) assay; however, no interactions were observed in a surface plasmon resonance assay for binding of the compounds to wild type or G12D mutant Ras constructs or to the Ras binding domain of Raf. NCI 60 cell line testing was also conducted, and little panel selectivity was observed.


Asunto(s)
Antineoplásicos , Hypocreales , Aminoácidos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Hypocreales/química , Peptaiboles/farmacología
10.
Proc Natl Acad Sci U S A ; 116(35): 17290-17297, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31399543

RESUMEN

Second harmonic generation (SHG) is an emergent biophysical method that sensitively measures real-time conformational change of biomolecules in the presence of biological ligands and small molecules. This study describes the successful implementation of SHG as a primary screening platform to identify fragment ligands to oncogenic Kirsten rat sarcoma (KRas). KRas is the most frequently mutated driver of pancreatic, colon, and lung cancers; however, there are few well-characterized small molecule ligands due to a lack of deep binding pockets. Using SHG, we identified a fragment binder to KRasG12D and used 1H 15N transverse relaxation optimized spectroscopy (TROSY) heteronuclear single-quantum coherence (HSQC) NMR to characterize its binding site as a pocket adjacent to the switch 2 region. The unique sensitivity of SHG furthered our study by revealing distinct conformations induced by our hit fragment compared with 4,6-dichloro-2-methyl-3-aminoethyl-indole (DCAI), a Ras ligand previously described to bind the same pocket. This study highlights SHG as a high-throughput screening platform that reveals structural insights in addition to ligand binding.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/química , Sustitución de Aminoácidos , Sitios de Unión , Humanos , Mutación Missense , Resonancia Magnética Nuclear Biomolecular , Proteínas Proto-Oncogénicas p21(ras)/genética
11.
Biophys J ; 120(18): 4055-4066, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34384763

RESUMEN

KRAS4B is a membrane-anchored signaling protein and a primary target in cancer research. Predictions from molecular dynamics simulations that have previously shaped our mechanistic understanding of KRAS signaling disagree with recent experimental results from neutron reflectometry, NMR, and thermodynamic binding studies. To gain insight into these discrepancies, we compare this body of biophysical data to back-calculated experimental results from a series of molecular simulations that implement different subsets of molecular interactions. Our results show that KRAS4B approximates an entropic ensemble of configurations at model membranes containing 30% phosphatidylserine lipids, which is not significantly shaped by interactions between the globular G-domain of KRAS4B and the lipid membrane. These findings revise our understanding of KRAS signaling and promote a model in which the protein samples the accessible conformational space in a near-uniform manner while being available to bind to effector proteins.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas p21(ras) , Conformación Molecular , Fosfatidilserinas , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/genética
12.
J Membr Biol ; 254(2): 201-216, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33825026

RESUMEN

Small GTPase proteins are ubiquitous and responsible for regulating several processes related to cell growth and differentiation. Mutations that stabilize their active state can lead to uncontrolled cell proliferation and cancer. Although these proteins are well characterized at the cellular scale, the molecular mechanisms governing their functions are still poorly understood. In addition, there is limited information about the regulatory function of the cell membrane which supports their activity. Thus, we have studied the dynamics and conformations of the farnesylated KRAS4b in various membrane model systems, ranging from binary fluid mixtures to heterogeneous raft mimics. Our approach combines long time-scale coarse-grained (CG) simulations and Markov state models to dissect the membrane-supported dynamics of KRAS4b. Our simulations reveal that protein dynamics is mainly modulated by the presence of anionic lipids and to some extent by the nucleotide state (activation) of the protein. In addition, our results suggest that both the farnesyl and the polybasic hypervariable region (HVR) are responsible for its preferential partitioning within the liquid-disordered (Ld) domains in membranes, potentially enhancing the formation of membrane-driven signaling platforms.


Asunto(s)
Membrana Celular/química , Lípidos , Proteínas Proto-Oncogénicas p21(ras)/química , Lípidos/química , Conformación Proteica
13.
Semin Cancer Biol ; 54: 174-182, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29432816

RESUMEN

Development of therapeutic strategies against RAS-driven cancers has been challenging due in part to a lack of understanding of the biology of the system and the ability to design appropriate assays and reagents for targeted drug discovery efforts. Recent developments in the field have opened up new avenues for exploration both through advances in the number and quality of reagents as well as the introduction of novel biochemical and cell-based assay technologies which can be used for high-throughput screening of compound libraries. The reagents and assays developed at the NCI RAS Initiative offer a suite of new weapons that could potentially be used to enable the next generation of RAS drug discovery efforts with the hope of finding novel therapeutics for a target once deemed undruggable.


Asunto(s)
Descubrimiento de Drogas , Proteínas ras/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/normas , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos de Selección de Medicamentos Antitumorales/normas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica/efectos de los fármacos , Control de Calidad , Transducción de Señal/efectos de los fármacos , Proteínas ras/genética , Proteínas ras/metabolismo
14.
Biophys J ; 119(3): 525-538, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32649863

RESUMEN

CRAF activation requires binding to membrane-anchored and active GTP-bound RAS. Whereas its RAS-binding domain (RBD) contains the main binding interface to the RAS G domain, its cysteine-rich domain (CRD) is responsible for association to anionic lipid-rich membranes. Both RAF domains are connected by a short linker, and it remains unclear if the two domains act independently or if one domain can impact the function of the other. Here, we used a combination of coarse-grained and all-atom molecular dynamics simulations of a CRAF RBD-CRD construct to investigate the dynamics of the RBD when it is tethered to CRD that is anchored to a POPC:POPS model membrane. First, we show that the RBD positioning is very dynamic with a preferential localization near the membrane surface. Next, we show that membrane-localized RBD has its RAS-binding interface mostly inaccessible because of its proximity to the membrane. Several positively charged residues in this interface were identified from simulations as important for driving RBD association to the membrane. Surface plasmon resonance (SPR) measurements confirmed that mutations of these RBD residues reduced the liposome partitioning of RBD-CRD. Last, simulations indicated that the presence of RBD near the membrane led to a local enrichment of anionic lipids that could potentially enhance the membrane affinity of the entire RBD-CRD construct. This was supported by SPR measurements that showed stronger liposome partitioning of RBD-CRD relative to CRD alone. These findings thus suggest that the RBD and CRD have synergistic effects on their membrane dynamics, with CRD bringing RBD closer to the membrane that impacts its accessibility to RAS and with RBD causing local anionic lipid enrichment that enhances the overall affinity between the membrane and RBD-CRD. These mechanisms have potential implications on the order of events of the interactions between RAS and CRAF at the membrane.


Asunto(s)
Proteínas Proto-Oncogénicas c-raf , Proteínas ras , Sitios de Unión , Lípidos , Unión Proteica , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas ras/metabolismo
15.
J Biol Chem ; 294(6): 2193-2207, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30559287

RESUMEN

The gene encoding the GTPase KRAS is frequently mutated in pancreatic, lung, and colorectal cancers. The KRAS fraction in the plasma membrane (PM) correlates with activation of the mitogen-activated protein kinase (MAPK) pathway and subsequent cellular proliferation. Understanding KRAS's interaction with the PM is challenging given the complexity of the cellular environment. To gain insight into key components necessary for KRAS signal transduction at the PM, we used synthetic membranes such as liposomes and giant unilamellar vesicles. Using surface plasmon resonance (SPR) spectroscopy, we demonstrated that KRAS and Raf-1 proto-oncogene Ser/Thr kinase (RAF1) domains interact with these membranes primarily through electrostatic interactions with negatively charged lipids reinforced by additional interactions involving phosphatidyl ethanolamine and cholesterol. We found that the RAF1 region spanning RBD through CRD (RBDCRD) interacts with the membrane significantly more strongly than the isolated RBD or CRD domains and synergizes KRAS partitioning to the membrane. We also found that calmodulin and phosphodiesterase 6 delta (PDE6δ), but not galectin3 previously proposed to directly interact with KRAS, passively sequester KRAS and prevent it from partitioning into the PM. RAF1 RBDCRD interacted with membranes preferentially at nonraft lipid domains. Moreover, a C-terminal O-methylation was crucial for KRAS membrane localization. These results contribute to a better understanding of how the KRAS-membrane interaction is tuned by multiple factors whose identification could inform drug discovery efforts to disrupt this critical interaction in diseases such as cancer.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Calmodulina/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Membranas Artificiales , Dominios Proteicos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-raf , Transducción de Señal , Electricidad Estática
16.
Biophys J ; 116(6): 1049-1063, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30846362

RESUMEN

Deregulation of KRAS4b signaling pathway has been implicated in 30% of all cancers. Membrane localization of KRAS4b is an essential step for the initiation of the downstream signaling cascades that guide various cellular mechanisms. KRAS4b plasma membrane (PM) binding is mediated by the insertion of a prenylated moiety that is attached to the terminal carboxy-methylated cysteine, in addition to electrostatic interactions of its positively charged hypervariable region with anionic lipids. Calmodulin (CaM) has been suggested to selectively bind KRAS4b to act as a negative regulator of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway by displacing KRAS4b from the membrane. However, the mechanism by which CaM can recognize and displace KRAS4b from the membrane is not well understood. In this study, we employed biophysical and structural techniques to characterize this mechanism in detail. We show that KRAS4b prenylation is required for binding to CaM and that the hydrophobic pockets of CaM can accommodate the prenylated region of KRAS4b, which might represent a novel CaM-binding motif. Remarkably, prenylated KRAS4b forms a 2:1 stoichiometric complex with CaM in a nucleotide-independent manner. The interaction between prenylated KRAS4b and CaM is enthalpically driven, and electrostatic interactions also contribute to the formation of the complex. The prenylated KRAS4b terminal KSKTKC-farnesylation and carboxy-methylation is sufficient for binding and defines the minimal CaM-binding motif. This is the same region implicated in membrane and phosphodiesterase6-δ binding. Finally, we provide a structure-based docking model by which CaM binds to prenylated KRAS4b. Our data provide new insights into the KRAS4b-CaM interaction and suggest a possible mechanism whereby CaM can regulate KRAS4b membrane localization.


Asunto(s)
Calmodulina/metabolismo , Prenilación de Proteína , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Calmodulina/química , Humanos , Modelos Moleculares , Nucleótidos/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/química
17.
Biochemistry ; 58(33): 3537-3545, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31339036

RESUMEN

KRAS4b is a small GTPase involved in cellular signaling through receptor tyrosine kinases. The activation of KRAS4b occurs only after recruitment of the regulatory proteins to the plasma membrane, thus making the role of the phospholipid bilayer an integral part of the signaling mechanism. Phospholipids, primarily with anionic headgroups, interact with both the membrane-anchoring hypervariable (HVR) region and the G-domain (catalytic domain) and influence the orientation of KRAS4b on the membrane surface, potentially playing a key role in the regulation of activation. Although there has been significant research focused on the role of the anionic phosphatidylserine, less effort has been spent on the role of the important signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Using instrumentation to measure the fluorescence anisotropy decay of site specifically labeled 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) Nanodiscs over a wide frequency range, we quantitate the binding of KRAS4b to Nanodiscs containing either 30% phosphatidylserine (PS) or 10% l-α-phosphatidylinositol 4,5-bisphosphate by measuring the rotational correlation time of the Nanodisc-KRAS4b complex. We find that KRAS4b binds significantly tighter to Nanodiscs containing PIP2 but that at any level of binding saturation of KRAS4b, both 30% PS and 10% PIP2 containing Nanodiscs display similar rotational correlation times. This shows that the overall hydrodynamic radii of the KRAS4b-Nanodisc complexes are similar regardless of the incorporated anionic lipid. Atomic force microscopy is used to visualize KRAS4b when bound to individual Nanodiscs. Clean images are observed with the PIP2-doped Nanodiscs, but significantly blurred images are obtained when the anionic lipid is PS. This suggests that KRAS4b is not only more tightly bound overall with PIP2 as the anionic lipid but also less mobile on the bilayer surface. Microsecond molecular dynamics simulations of KRAS4b on PS- and PIP2-containing membranes show that the dynamics of the G-domain at the bilayer surface are significantly altered in the presence of PIP2, due to the formation of long-lived salt bridges with basic residues on the G-domain. The orientation and dynamics of KRAS4b on the membrane are critical to understanding the mechanisms of oncoprotein signaling, and our results with the GDP-bound form show subtle differences from that published for GTP-KRAS4b.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Dominio Catalítico , Membrana Celular/metabolismo , Humanos , Simulación de Dinámica Molecular , Fosfatidilserinas/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Proto-Oncogénicas p21(ras)/química
18.
Proc Natl Acad Sci U S A ; 113(44): E6766-E6775, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791178

RESUMEN

Farnesylation and carboxymethylation of KRAS4b (Kirsten rat sarcoma isoform 4b) are essential for its interaction with the plasma membrane where KRAS-mediated signaling events occur. Phosphodiesterase-δ (PDEδ) binds to KRAS4b and plays an important role in targeting it to cellular membranes. We solved structures of human farnesylated-methylated KRAS4b in complex with PDEδ in two different crystal forms. In these structures, the interaction is driven by the C-terminal amino acids together with the farnesylated and methylated C185 of KRAS4b that binds tightly in the central hydrophobic pocket present in PDEδ. In crystal form II, we see the full-length structure of farnesylated-methylated KRAS4b, including the hypervariable region. Crystal form I reveals structural details of farnesylated-methylated KRAS4b binding to PDEδ, and crystal form II suggests the potential binding mode of geranylgeranylated-methylated KRAS4b to PDEδ. We identified a 5-aa-long sequence motif (Lys-Ser-Lys-Thr-Lys) in KRAS4b that may enable PDEδ to bind both forms of prenylated KRAS4b. Structure and sequence analysis of various prenylated proteins that have been previously tested for binding to PDEδ provides a rationale for why some prenylated proteins, such as KRAS4a, RalA, RalB, and Rac1, do not bind to PDEδ. Comparison of all four available structures of PDEδ complexed with various prenylated proteins/peptides shows the presence of additional interactions due to a larger protein-protein interaction interface in KRAS4b-PDEδ complex. This interface might be exploited for designing an inhibitor with minimal off-target effects.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas/química , 3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Prenilación de Proteína/fisiología , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , 3',5'-GMP Cíclico Fosfodiesterasas/genética , Secuencia de Aminoácidos , Sitios de Unión , Membrana Celular/metabolismo , Cristalografía por Rayos X , Genes ras , Humanos , Metilación , Modelos Moleculares , Conformación Molecular , Mutación , Unión Proteica/fisiología , Proteínas Proto-Oncogénicas p21(ras)/genética , Análisis de Secuencia , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP ral/metabolismo
19.
Biophys J ; 114(1): 137-145, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29320680

RESUMEN

Ras is a membrane-anchored signaling protein that serves as a hub for many signaling pathways and also plays a prominent role in cancer. The intrinsic behavior of Ras on the membrane has captivated the biophysics community in recent years, especially the possibility that it may form dimers. In this article, we describe results from a comprehensive series of experiments using fluorescence correlation spectroscopy and single-molecule tracking to probe the possible dimerization of natively expressed and fully processed K-Ras4B in supported lipid bilayer membranes. Key to these studies is the fact that K-Ras4B has its native membrane anchor, including both the farnesylation and methylation of the terminal cysteine, enabling detailed exploration of possible effects of cholesterol and lipid composition on K-Ras4B membrane organization. The results from all conditions studied indicate that full-length K-Ras4B lacks intrinsic dimerization capability. This suggests that any lateral organization of Ras in living cell membranes likely stems from interactions with other factors.


Asunto(s)
Membrana Celular/química , Proteínas Proto-Oncogénicas p21(ras)/química , Humanos , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA