RESUMEN
Multi-resistant bacteria are a rapidly emerging threat to modern medicine. It is thus essential to identify and validate novel antibacterial targets that promise high robustness against resistance-mediating mutations. This can be achieved by simultaneously targeting several conserved function-determining protein-protein interactions in enzyme complexes from prokaryotic primary metabolism. Here, we selected two evolutionary related glutamine amidotransferase complexes, aminodeoxychorismate synthase and anthranilate synthase, that are required for the biosynthesis of folate and tryptophan in most prokaryotic organisms. Both enzymes rely on the interplay of a glutaminase and a synthase subunit that is conferred by a highly conserved subunit interface. Consequently, inhibiting subunit association in both enzymes by one competing bispecific inhibitor has the potential to suppress bacterial proliferation. We comprehensively verified two conserved interface hot-spot residues as potential inhibitor-binding sites in vitro by demonstrating their crucial role in subunit association and enzymatic activity. For in vivo target validation, we generated genomically modified Escherichia coli strains in which subunit association was disrupted by modifying these central interface residues. The growth of such strains was drastically retarded on liquid and solid minimal medium due to a lack of folate and tryptophan. Remarkably, the bacteriostatic effect was observed even in the presence of heat-inactivated human plasma, demonstrating that accessible host metabolite concentrations do not compensate for the lack of folate and tryptophan within the tested bacterial cells. We conclude that a potential inhibitor targeting both enzyme complexes will be effective against a broad spectrum of pathogens and offer increased resilience against antibiotic resistance. IMPORTANCE: Antibiotics are indispensable for the treatment of bacterial infections in human and veterinary medicine and are thus a major pillar of modern medicine. However, the exposure of bacteria to antibiotics generates an unintentional selective pressure on bacterial assemblies that over time promotes the development or acquisition of resistance mechanisms, allowing pathogens to escape the treatment. In that manner, humanity is in an ever-lasting race with pathogens to come up with new treatment options before resistances emerge. In general, antibiotics with novel modes of action require more complex pathogen adaptations as compared to chemical derivates of existing entities, thus delaying the emergence of resistance. In this contribution, we use modified Escherichia coli strains to validate two novel targets required for folate and tryptophan biosynthesis that can potentially be targeted by one and the same bispecific protein-protein interaction inhibitor and promise increased robustness against bacterial resistances.
Asunto(s)
Antranilato Sintasa , Antibacterianos , Anticuerpos Biespecíficos , Escherichia coli , Antranilato Sintasa/antagonistas & inhibidores , Antranilato Sintasa/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transaminasas/antagonistas & inhibidores , Transaminasas/metabolismo , Triptófano/metabolismo , Anticuerpos Biespecíficos/farmacologíaRESUMEN
We present a detailed structure-function analysis of the ureidoacrylate amidohydrolase RutB from Eschericha coli, which is an essential enzyme of the Rut pathway for pyrimidine utilization. Crystals of selenomethionine-labeled RutB were produced, which allowed us to determine the first structure of the enzyme at a resolution of 1.9 Å and to identify it as a new member of the isochorismatase-like hydrolase family. RutB was co-crystallized with the substrate analogue ureidopropionate, revealing the mode of substrate binding. Mutation of residues constituting the catalytic triad (D24A, D24N, K133A, C166A, C166S, C166T, C166Y) resulted in complete inactivation of RutB, whereas mutation of other residues close to the active site (Y29F, Y35F, N72A, W74A, W74F, E80A, E80D, S92A, S92T, S92Y, Q105A, Y136A, Y136F) leads to distinct changes of the turnover number (kcat) and/or the Michaelis constant (KM). The results of our structural and mutational studies allowed us to assign specific functions to individual residues and to formulate a plausible reaction mechanism for RutB.
Asunto(s)
Amidohidrolasas , Proteínas de Escherichia coli , Escherichia coli , Amidohidrolasas/química , Sitios de Unión , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Especificidad por SustratoRESUMEN
Tryptophan synthase (TS) is a heterotetrameric αßßα complex. It is characterized by the channeling of the reaction intermediate indole and the mutual activation of the α-subunit TrpA and the ß-subunit TrpB via a complex allosteric network. We have analyzed this allosteric network by means of ancestral sequence reconstruction (ASR), which is an in silico method to resurrect extinct ancestors of modern proteins. Previously, the sequences of TrpA and TrpB from the last bacterial common ancestor (LBCA) have been computed by means of ASR and characterized. LBCA-TS is similar to modern TS by forming a αßßα complex with indole channeling taking place. However, LBCA-TrpA allosterically decreases the activity of LBCA-TrpB, whereas, for example, the modern ncTrpA from Neptuniibacter caesariensis allosterically increases the activity of ncTrpB. To identify amino acid residues that are responsible for this inversion of the allosteric effect, all 6 evolutionary TrpA and TrpB intermediates that stepwise link LBCA-TS with ncTS were characterized. Remarkably, the switching from TrpB inhibition to TrpB activation by TrpA occurred between 2 successive TS intermediates. Sequence comparison of these 2 intermediates and iterative rounds of site-directed mutagenesis allowed us to identify 4 of 413 residues from TrpB that are crucial for its allosteric activation by TrpA. The effect of our mutational studies was rationalized by a community analysis based on molecular dynamics simulations. Our findings demonstrate that ancestral sequence reconstruction can efficiently identify residues contributing to allosteric signal propagation in multienzyme complexes.
Asunto(s)
Proteínas Bacterianas/genética , Biología Computacional , Extinción Biológica , Subunidades de Proteína/genética , Triptófano Sintasa/genética , Regulación Alostérica/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Oceanospirillaceae/genética , Oceanospirillaceae/metabolismo , Filogenia , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Triptófano/biosíntesis , Triptófano Sintasa/química , Triptófano Sintasa/metabolismoRESUMEN
Light regulation of drug molecules has gained growing interest in biochemical and pharmacological research in recent years. In addition, a serious need for novel molecular targets of antibiotics has emerged presently. Herein, the development of a photocontrollable, azobenzene-based antibiotic precursor towards tryptophan synthase (TS), an essential metabolic multienzyme complex in bacteria, is presented. The compound exhibited moderately strong inhibition of TS in its E configuration and five times lower inhibition strength in its Z configuration. A combination of biochemical, crystallographic, and computational analyses was used to characterize the inhibition mode of this compound. Remarkably, binding of the inhibitor to a hitherto-unconsidered cavity results in an unproductive conformation of TS leading to noncompetitive inhibition of tryptophan production. In conclusion, we created a promising lead compound for combatting bacterial diseases, which targets an essential metabolic enzyme, and whose inhibition strength can be controlled with light.
Asunto(s)
Compuestos Azo/farmacología , Inhibidores Enzimáticos/farmacología , Triptófano Sintasa/antagonistas & inhibidores , Inhibidores Enzimáticos/efectos de la radiaciónRESUMEN
Imidazole glycerol phosphate synthase (ImGPS) from Thermotoga maritima is a model enzyme for studying allostery. The ImGPS complex consists of the cyclase subunit HisF and the glutaminase subunit HisH whose activity is stimulated by substrate binding to HisF in a V-type manner. To investigate the significance of a putative closing hinge motion at the cyclase:glutaminase interface for HisH activity, we replaced residue W123 in HisH with the light-switchable unnatural amino acid phenylalanine-4'-azobenzene (AzoF). Crystal structure analysis employing angle, buried surface area, and distance measurements showed that incorporation of AzoF at this position causes a closing of the interface by â¼18 ± 3%. This slightly different interface configuration results in a much higher catalytic efficiency in unstimulated HisH due to an elevated turnover number. Moreover, the catalytic efficiency of HisH when stimulated by binding of a substrate to HisF was also significantly increased by AzoF incorporation. This was caused by a K-type stimulation that led to a decrease in the apparent dissociation constant for its substrate, glutamine. In addition, AzoF improved the apparent binding of a substrate analogue at the HisF active site. Remarkably, light-induced isomerization of AzoF considerably enhanced these effects. In conclusion, our findings confirm that signal transduction from HisF to HisH in ImGPS involves the closing of the cyclase:glutaminase subunit interface and that incorporation of AzoF at a hinge position reinforces this catalytically relevant conformational change.
Asunto(s)
Aminohidrolasas/química , Thermotoga maritima/enzimología , Regulación Alostérica , Aminohidrolasas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Activación Enzimática , Glutamina/metabolismo , Cinética , Modelos Moleculares , Conformación Proteica , Thermotoga maritima/química , Thermotoga maritima/metabolismoRESUMEN
Cells contain a multitude of protein complexes whose subunits interact with high specificity. However, the number of different protein folds and interface geometries found in nature is limited. This raises the question of how protein-protein interaction specificity is achieved on the structural level and how the formation of nonphysiological complexes is avoided. Here, we describe structural elements called interface add-ons that fulfill this function and elucidate their role for the diversification of protein-protein interactions during evolution. We identified interface add-ons in 10% of a representative set of bacterial, heteromeric protein complexes. The importance of interface add-ons for protein-protein interaction specificity is demonstrated by an exemplary experimental characterization of over 30 cognate and hybrid glutamine amidotransferase complexes in combination with comprehensive genetic profiling and protein design. Moreover, growth experiments showed that the lack of interface add-ons can lead to physiologically harmful cross-talk between essential biosynthetic pathways. In sum, our complementary in silico, in vitro, and in vivo analysis argues that interface add-ons are a practical and widespread evolutionary strategy to prevent the formation of nonphysiological complexes by specializing protein-protein interactions.
Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas Bacterianas/metabolismo , Evolución Biológica , Dominios y Motivos de Interacción de Proteínas , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bases de Datos de Proteínas , Modelos Moleculares , Unión Proteica , Conformación ProteicaRESUMEN
The members of the glutamine amidotransferase (GATase) family catalyze the incorporation of ammonia within numerous metabolic pathways and can be categorized in two classes. Here, we concentrated on class I GATases, which are heteromeric enzyme complexes consisting of synthase subunits and glutaminase subunits with a catalytic Cys-His-Glu triad. Glutamine hydrolysis at the glutaminase subunit is (i) dependent on the formation of tight synthase-glutaminase complexes and (ii) allosterically coupled to the presence of the substrate at the synthase subunit. The structural basis of both complex formation and allostery is poorly understood. However, previous work on 4-amino-4-deoxychorismate synthase and imidazole glycerol phosphate synthase suggested that a conserved aspartate residue in their synthase subunits, which is located at the subunit interface close to the glutaminase catalytic triad, might be important for both features. We performed a computational screen of class I GATases from the Protein Data Bank and identified conserved and similarly located aspartate residues. We then generated alanine and glutamate mutants of these residues and characterized them by analytical gel filtration and steady-state enzyme kinetics. The results confirmed the important role of the wild-type aspartate residues for the formation of stable synthase-glutaminase complexes (in three of four cases) and the stimulation of glutaminase activity in the analyzed GATases (in all four cases). We present a model for rationalizing the dual role of the conserved aspartate residue toward a unifying regulation mechanism in the entire class I GATase family.
Asunto(s)
Ácido Aspártico/química , Glutaminasa/química , Complejos Multienzimáticos/química , Regulación Alostérica/genética , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/química , Glutaminasa/genética , Cinética , Complejos Multienzimáticos/genética , Mutagénesis Sitio-Dirigida , Mutación , Multimerización de Proteína/genéticaRESUMEN
The potential of the frequently encountered (ßα)8-barrel fold to acquire new functions was tested by an approach combining random mutagenesis and selection in vivo. For this purpose, the genes encoding 52 different phosphate-binding (ßα)8-barrel proteins were subjected to error-prone PCR and cloned into an expression plasmid. The resulting mixed repertoire was used to transform different auxotrophic Escherichia coli strains, each lacking an enzyme with a phosphate-containing substrate. After plating of the different transformants on minimal medium, growth was observed only for two strains, lacking either the gene for the serine phosphatase SerB or the phosphoserine aminotransferase SerC. The same mutants of the E. coli genes nanE (encoding a putative N-acetylmannosamine-6-phosphate 2-epimerase) and pdxJ (encoding the pyridoxine 5'-phosphate synthase) were responsible for rescuing both ΔserB and ΔserC. Unexpectedly, the complementing NanE and PdxJ variants did not catalyze the SerB or SerC reactions in vitro. Instead, RT-qPCR, RNAseq, and transcriptome analysis showed that they rescue the deletions by enlisting the help of endogenous E. coli enzymes HisB and HisC through exclusive up-regulation of histidine operon transcription. While the promiscuous SerB activity of HisB is well-established, our data indicate that HisC is promiscuous for the SerC reaction, as well. The successful rescue of ΔserB and ΔserC through point mutations and recruitment of additional amino acids in NanE and PdxJ provides another example for the adaptability of the (ßα)8-barrel fold.
Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Triosa-Fosfato Isomerasa/química , Triosa-Fosfato Isomerasa/genética , Proteínas Bacterianas/genética , Sitios de Unión , Carbohidrato Epimerasas/genética , Cristalización , Proteínas de Escherichia coli/genética , Histidinol-Fosfatasa/química , Ligasas/genética , Espectroscopía de Resonancia Magnética , Metaboloma , Fosfoserina/química , Plásmidos/genética , Mutación Puntual , Pliegue de Proteína , Estructura Secundaria de Proteína , Transaminasas/química , Transaminasas/genéticaRESUMEN
It is an important goal of computational biology to correctly predict the association state of a protein based on its amino acid sequence and the structures of known homologues. We have pursued this goal on the example of anthranilate phosphoribosyltransferase (AnPRT), an enzyme that is involved in the biosynthesis of the amino acid tryptophan. Firstly, known crystal structures of naturally occurring homodimeric AnPRTs were analyzed using the Protein Interfaces, Surfaces, and Assemblies (PISA) service of the European Bioinformatics Institute (EBI). This led to the identification of two hydrophobic "hot spot" amino acids in the protein-protein interface that were predicted to be essential for self-association. Next, in a comprehensive multiple sequence alignment (MSA), naturally occurring AnPRT variants with hydrophilic or charged amino acids in place of hydrophobic residues in the two hot spot positions were identified. Representative variants were characterized in terms of thermal stability, enzymatic activity, and quaternary structure. We found that AnPRT variants with charged residues in both hot spot positions exist exclusively as monomers in solution. Variants with hydrophilic amino acids in one hot spot position occur in both forms, monomer and dimer. The results of the present study provide a detailed characterization of the determinants of the AnPRT monomer-dimer equilibrium and show that analysis of hot spots in combination with MSAs can be a valuable tool in prediction of protein quaternary structures.
Asunto(s)
Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Bacterias/enzimología , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Antranilato Fosforribosiltransferasa/genética , Dominio Catalítico , Biología Computacional , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Multimerización de ProteínaRESUMEN
The αßßα tryptophan synthase (TS), which is part of primary metabolism, is a paradigm for allosteric communication in multienzyme complexes. In particular, the intrinsically low catalytic activity of the α-subunit TrpA is stimulated several hundredfold through the interaction with the ß-subunit TrpB1. The BX1 protein from Zea mays (zmBX1), which is part of secondary metabolism, catalyzes the same reaction as that of its homologue TrpA, but with high activity in the absence of an interaction partner. The intrinsic activity of TrpA can be significantly increased through the exchange of several active-site loop residues, which mimic the corresponding loop in zmBX1. The subsequent identification of activating amino acids in the generated "stand-alone" TrpA contributes to an understanding of allostery in TS. Moreover, findings suggest an evolutionary trajectory that describes the transition from a primary metabolic enzyme regulated by an interaction partner to a self-reliant, stand-alone, secondary metabolic enzyme.
Asunto(s)
Complejos Multienzimáticos/metabolismo , Proteínas de Plantas/metabolismo , Triptófano Sintasa/metabolismo , Zea mays/enzimología , Secuencia de Aminoácidos , Biocatálisis , Evolución Biológica , Dominio Catalítico , Cinética , Modelos Moleculares , Complejos Multienzimáticos/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Homología de Secuencia de Aminoácido , Triptófano Sintasa/química , Triptófano Sintasa/genética , Zea mays/genéticaRESUMEN
Insect pheromones are often derived from fatty acid metabolism. Fatty acid desaturases, enzymes introducing double bonds into fatty acids, are crucial for the biosynthesis of these chemical signals. Δ12-desaturases catalyse the biosynthesis of linoleic acid by introducing a second double bond into oleic acid, but have been identified in only a few animal species. Here, we report the functional characterisation of two Δ12-desaturases, Nvit_D12a and Nvit_D12b, from the parasitic wasp Nasonia vitripennis. We demonstrate that Nvit_D12a is expressed in the rectal vesicle of males where they produce a linoleic acid-derived sex pheromone to attract virgin females. 13C-labelling experiments with Urolepis rufipes, a closely related species belonging to the 'Nasonia group', revealed that females, but not males, are able to synthesise linoleic acid. U. rufipes males produce an isoprenoid sex pheromone in the same gland and do not depend on linoleic acid for pheromone production. This suggests that Δ12-desaturases are common in the 'Nasonia group', but acquired a specialised function in chemical communication of those species that use linoleic acid as a pheromone precursor. Phylogenetic analysis suggests that insect Δ12-desaturases have evolved repeatedly from Δ9-desaturases in different insect taxa. Hence, insects have developed a way to produce linoleic acid independent of the omega desaturase subfamily which harbours all of the eukaryotic Δ12-desaturases known so far.
Asunto(s)
Ácido Graso Desaturasas/genética , Proteínas de Insectos/genética , Ácido Linoleico/metabolismo , Atractivos Sexuales/biosíntesis , Avispas/metabolismo , Animales , Ácido Graso Desaturasas/metabolismo , Femenino , Proteínas de Insectos/metabolismo , MasculinoRESUMEN
Modern enzymes are highly optimized biocatalysts that process their substrates with extreme efficiency. Many enzymes catalyze more than one reaction; however, the persistence of such ambiguities, their consequences and evolutionary causes are largely unknown. As a paradigmatic case, we study the history of bi-functionality for a time span of approximately two billion years for the sugar isomerase HisA from histidine biosynthesis. To look back in time, we computationally reconstructed and experimentally characterized three HisA predecessors. We show that these ancient enzymes catalyze not only the HisA reaction but also the isomerization of a similar substrate, which is commonly processed by the isomerase TrpF in tryptophan biosynthesis. Moreover, we found that three modern-day HisA enzymes from Proteobacteria and Thermotogae also possess low TrpF activity. We conclude that this bi-functionality was conserved for at least two billion years, most likely without any evolutionary pressure. Although not actively selected for, this trait can become advantageous in the case of a gene loss. Such exaptation is exemplified by the Actinobacteria that have lost the trpF gene but possess the bi-functional HisA homolog PriA, which adopts the roles of both HisA and TrpF. Our findings demonstrate that bi-functionality can perpetuate in the absence of selection for very long time-spans.
Asunto(s)
Evolución Molecular , Histidina/biosíntesis , Isomerasas/genética , Actinobacteria/enzimología , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico/genética , Histidina/genética , Isomerasas/química , Estructura Secundaria de Proteína , Proteobacteria/enzimología , Especificidad por Sustrato , Triptófano/biosíntesisRESUMEN
The spatiotemporal control of enzymes by light is of growing importance for industrial biocatalysis. Within this context, the photo-control of allosteric interactions in enzyme complexes, common to practically all metabolic pathways, is particularly relevant. A prominent example of a metabolic complex with a high application potential is tryptophan synthase from Salmonella typhimurium (TS), in which the constituting TrpA and TrpB subunits mutually stimulate each other via a sophisticated allosteric network. To control TS allostery with light, we incorporated the unnatural amino acid o-nitrobenzyl-O-tyrosine (ONBY) at seven strategic positions of TrpA and TrpB. Initial screening experiments showed that ONBY in position 58 of TrpA (aL58ONBY) inhibits TS activity most effectively. Upon UV irradiation, ONBY decages to tyrosine, largely restoring the capacity of TS. Biochemical characterization, extensive steady-state enzyme kinetics, and titration studies uncovered the impact of aL58ONBY on the activities of TrpA and TrpB and identified reaction conditions under which the influence of ONBY decaging on allostery reaches its full potential. By applying those optimal conditions, we succeeded to directly light-activate TS(aL58ONBY) by a factor of ~100. Our findings show that rational protein design with a photo-sensitive unnatural amino acid combined with extensive enzymology is a powerful tool to fine-tune allosteric light-activation of a central metabolic enzyme complex.
Asunto(s)
Biocatálisis/efectos de la radiación , Luz , Ingeniería de Proteínas , Triptófano Sintasa/química , Regulación Alostérica , Secuencia de Aminoácidos , Activación Enzimática/efectos de la radiación , Cinética , Modelos Moleculares , Conformación Molecular , Unión Proteica , Relación Estructura-ActividadRESUMEN
The cell membranes of all archaea contain ether lipids, and a number of archaea are hyperthermophilic. Consequently, the enzymes that catalyze the synthesis of membrane ether lipids had to adopt to these rough conditions. Interestingly, the enzyme that establishes the first ether bond in these lipids, the geranylgeranylglyceryl phosphate synthase (GGGPS), forms hexamers in many hyperthermophilic archaea, while also dimeric variants of this enzyme exist in other species. We used Methanothermobacter thermautotrophicus GGGPS (mtGGGPS) as a model to elucidate the benefit of hexamerization. We studied the oligomerization interfaces in detail by introducing disturbing mutations and subsequently compared the stability and activity of generated dimeric and monomeric variants with the wild-type enzyme. Differential scanning calorimetry revealed a biphasic denaturation of mtGGGPS. The temperature of the first transition varies and rises with increasing oligomerization state. This first phase of denaturation leads to catalytic inactivation, but CD spectroscopy indicated only minor changes on the secondary structure level. The residual part of the fold is extremely thermostable and denatures in a second phase at temperatures >120 °C. The analysis of another distant native GGGPS enzyme affirms these observations. Molecular dynamics simulations revealed three structural elements close to the substrate binding sites with elevated flexibility. We assume that hexamerization might stabilize these structures, and kinetic studies support this hypothesis for the binding pocket of the substrate glycerol 1-phosphate. Oligomerization might thus positively affect the thermostability-flexibility trade-off in GGGPS by allowing a higher intrinsic flexibility of the individual protomers.
Asunto(s)
Transferasas Alquil y Aril/química , Archaea/enzimología , Catálisis , Estabilidad de Enzimas , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Glicerofosfatos/química , Calor , Cinética , Modelos Moleculares , Conformación Proteica , Multimerización de ProteínaRESUMEN
It is important to understand how the catalytic activity of enzymes is related to their conformational flexibility. We have studied this activity-flexibility correlation using the example of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus (ssIGPS), which catalyzes the fifth step in the biosynthesis of tryptophan. ssIGPS is a thermostable representative of enzymes with the frequently encountered and catalytically versatile (ßα)8-barrel fold. Four variants of ssIGPS with increased catalytic turnover numbers were analyzed by transient kinetics at 25 °C, and wild-type ssIGPS was likewise analyzed both at 25 °C and at 60 °C. Global fitting with a minimal three-step model provided the individual rate constants for substrate binding, chemical transformation, and product release. The results showed that in both cases, namely, the application of activating mutations and temperature increase, the net increase in the catalytic turnover number is afforded by acceleration of the product release rate relative to the chemical transformation steps. Measurements of the solvent viscosity effect at 25 °C versus 60 °C confirmed this change in the rate-determining step with temperature, which is in accordance with a kink in the Arrhenius diagram of ssIGPS at â¼40 °C. When rotational diffusion rates of electron paramagnetic spin-labels attached to active site loop ß1α1 are plotted in the form of an Arrhenius diagram, kinks are observed at the same temperature. These findings, together with molecular dynamics simulations, demonstrate that a different degree of loop mobility correlates with different rate-limiting steps in the catalytic mechanism of ssIGPS.
Asunto(s)
Proteínas Arqueales/química , Indol-3-Glicerolfosfato Sintasa/química , Simulación de Dinámica Molecular , Pliegue de Proteína , Sulfolobus solfataricus/enzimología , Catálisis , Calor , Dominios Proteicos , Estructura Secundaria de ProteínaRESUMEN
The artificial regulation of proteins by light is an emerging subdiscipline of synthetic biology. Here, we used this concept to photocontrol both catalysis and allostery within the heterodimeric enzyme complex imidazole glycerol phosphate synthase (ImGP-S). ImGP-S consists of the cyclase subunit HisF and the glutaminase subunit HisH, which is allosterically stimulated by substrate binding to HisF. We show that a light-sensitive diarylethene (1,2-dithienylethene, DTE)-based competitive inhibitor in its ring-open state binds with low micromolar affinity to the cyclase subunit and displaces its substrate from the active site. As a consequence, catalysis by HisF and allosteric stimulation of HisH are impaired. Following UV-light irradiation, the DTE ligand adopts its ring-closed state and loses affinity for HisF, restoring activity and allostery. Our approach allows for the switching of ImGP-S activity and allostery during catalysis and appears to be generally applicable for the light regulation of other multienzyme complexes.
RESUMEN
Computational protein design (CPD) is a powerful technique to engineer existing proteins or to design novel ones that display desired properties. Rosetta is a software suite including algorithms for computational modeling and analysis of protein structures and offers many elaborate protocols created to solve highly specific tasks of protein engineering. Most of Rosetta's protocols optimize sequences based on a single conformation (i. e. design state). However, challenging CPD objectives like multi-specificity design or the concurrent consideration of positive and negative design goals demand the simultaneous assessment of multiple states. This is why we have developed the multi-state framework MSF that facilitates the implementation of Rosetta's single-state protocols in a multi-state environment and made available two frequently used protocols. Utilizing MSF, we demonstrated for one of these protocols that multi-state design yields a 15% higher performance than single-state design on a ligand-binding benchmark consisting of structural conformations. With this protocol, we designed de novo nine retro-aldolases on a conformational ensemble deduced from a (ßα)8-barrel protein. All variants displayed measurable catalytic activity, testifying to a high success rate for this concept of multi-state enzyme design.
Asunto(s)
Algoritmos , Modelos Químicos , Ingeniería de Proteínas/métodos , Proteínas/química , Proteínas/ultraestructura , Análisis de Secuencia de Proteína/métodos , Simulación por Computador , Modelos Moleculares , Lenguajes de Programación , Conformación Proteica , Programas InformáticosRESUMEN
In Archaea, ether lipids play an essential role as the main building blocks of the cellular membrane. Recently, ether lipids have also been discovered in the domain of Bacteria, and the key enzymes that catalyze their synthesis, glycerol-1-phosphate dehydrogenase and heptaprenylglyceryl phosphate synthase, have been described. In Bacillales, heptaprenylglyceryl phosphate does not become linked to a second polyprenyl moiety like ether lipids in Archaea but is dephosphorylated and acetylated. Here, we report on the enzymes that catalyze these reactions. We enriched the phosphatase activity from a B. subtilis cell extract and suppose that dephosphorylation is catalyzed by the phosphatase PhoB or by any other phosphatase in an unspecific manner. By screening a B. subtilis knock-out library for deficiency in acetylation, the yvoF gene product was identified to be the acetyltransferase. The acetyl-CoA-dependent enzyme YvoF is a close relative of maltose O-acetyltransferase (MAT). Its catalytic properties were analyzed and compared with MAT. YvoF and MAT partially overlap in substrate and product range in vitro, but MAT is not able to complement the yvoF knock-out in vivo.
Asunto(s)
Bacillus subtilis/enzimología , Glicerolfosfato Deshidrogenasa/metabolismo , Acetiltransferasas/metabolismo , Biocatálisis , Glicerolfosfato Deshidrogenasa/química , FosforilaciónRESUMEN
It is important to identify hotspot residues that determine protein-protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA-HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA-HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site-directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high-affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312-321. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Aminohidrolasas/química , Subunidades de Proteína/química , Pyrobaculum/genética , Thermotoga maritima/genética , Zymomonas/genética , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Sitios de Unión , Evolución Biológica , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Mutación , Filogenia , Unión Proteica , Ingeniería de Proteínas , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Pyrobaculum/clasificación , Pyrobaculum/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , Thermotoga maritima/clasificación , Thermotoga maritima/enzimología , Zymomonas/clasificación , Zymomonas/enzimologíaRESUMEN
To obtain new insights into community compositions of hyperthermophilic microorganisms, defined as having optimal growth temperatures of 80 °C and above, sediment and water samples were taken from two shallow marine hydrothermal vents (I and II) with temperatures of 100 °C at Vulcano Island, Italy. A combinatorial approach of denaturant gradient gel electrophoresis (DGGE) and metagenomic sequencing was used for microbial community analyses of the samples. In addition, enrichment cultures, growing anaerobically on selected polysaccharides such as starch and cellulose, were also analyzed by the combinatorial approach. Our results showed a high abundance of hyperthermophilic archaea, especially in sample II, and a comparable diverse archaeal community composition in both samples. In particular, the strains of the hyperthermophilic anaerobic genera Staphylothermus and Thermococcus, and strains of the aerobic hyperthermophilic genus Aeropyrum, were abundant. Regarding the bacterial community, ε-Proteobacteria, especially the genera Sulfurimonas and Sulfurovum, were highly abundant. The microbial diversity of the enrichment cultures changed significantly by showing a high dominance of archaea, particularly the genera Thermococcus and Palaeococcus, depending on the carbon source and the selected temperature.