Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am Nat ; 203(4): 513-527, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38489781

RESUMEN

AbstractThe survival of an animal depends on its success as a forager, and understanding the adaptations that result in successful foraging strategies is an enduring endeavour of behavioral ecology. Random walks are one of the primary mathematical descriptions of foraging behavior. Power law distributions are often used to model random walks, as they can characterize a wide range of behaviors, including Lévy walks. Empirical evidence indicates the prevalence and efficiency of Lévy walks as a foraging strategy, and theoretical work suggests an evolutionary origin. However, previous evolutionary models have assumed a priori that move lengths are drawn from a power law or other families of distributions. Here, we remove this restriction with a model that allows for the evolution of any distribution. Instead of Lévy walks, our model unfailingly results in the evolution of intermittent search, a random walk composed of two disjoint modes-frequent localized walks and infrequent extensive moves-that consistently outcompeted Lévy walks. We also demonstrate that foraging using intermittent search may resemble a Lévy walk because of interactions with the resources within an environment. These extrinsically generated Lévy-like walks belie an underlying behavior and may explain the prevalence of Lévy walks reported in the literature.


Asunto(s)
Ecología , Modelos Biológicos , Animales
2.
Blood ; 139(4): 584-596, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34525179

RESUMEN

Acute myeloid leukemia (AML) is characterized by the presence of leukemia stem cells (LSCs), and failure to fully eradicate this population contributes to disease persistence/relapse. Prior studies have characterized metabolic vulnerabilities of LSCs, which demonstrate preferential reliance on oxidative phosphorylation (OXPHOS) for energy metabolism and survival. In the present study, using both genetic and pharmacologic strategies in primary human AML specimens, we show that signal transducer and activator of transcription 3 (STAT3) mediates OXPHOS in LSCs. STAT3 regulates AML-specific expression of MYC, which in turn controls transcription of the neutral amino acid transporter gene SLC1A5. We show that genetic inhibition of MYC or SLC1A5 acts to phenocopy the impairment of OXPHOS observed with STAT3 inhibition, thereby establishing this axis as a regulatory mechanism linking STAT3 to energy metabolism. Inhibition of SLC1A5 reduces intracellular levels of glutamine, glutathione, and multiple tricarboxylic acid (TCA) cycle metabolites, leading to reduced TCA cycle activity and inhibition of OXPHOS. Based on these findings, we used a novel small molecule STAT3 inhibitor, which binds STAT3 and disrupts STAT3-DNA, to evaluate the biological role of STAT3. We show that STAT3 inhibition selectively leads to cell death in AML stem and progenitor cells derived from newly diagnosed patients and patients who have experienced relapse while sparing normal hematopoietic cells. Together, these findings establish a STAT3-mediated mechanism that controls energy metabolism and survival in primitive AML cells.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/metabolismo , Leucemia Mieloide Aguda/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Supervivencia Celular , Humanos , Células Madre Neoplásicas/citología , Fosforilación Oxidativa , Células Tumorales Cultivadas
3.
Haematologica ; 109(6): 1766-1778, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38105738

RESUMEN

Venetoclax with azacitidine (ven/aza) is a lower-intensity therapeutic regimen that has been shown to improve outcomes in elderly patients with acute myeloid leukemia (AML). Measurable residual disease (MRD) using flow cytometry is a valuable tool for the prediction of relapse in AML using conventional therapies and ven/aza; however, the prognostic value for broadscale molecular MRD after ven/aza treatment is less clear. We aimed to determine the utility of retrospective assessment using multi-gene molecular MRD by droplet digital polymerase chain reaction (ddPCR). We found this approach correlates with outcomes in a cohort of patients receiving frontline ven/aza for AML. The predictive value of ddPCR MRD persisted when NPM1 mutations were removed from analysis, as well as after adjustment for the impact of stem cell transplant on outcomes. Late achievement of MRD negativity, including after SCT, was still associated with superior outcomes compared to persistently detectable MRD. We further explored the impact of ven/aza on the burden of different classes of mutations, and identified the persistence of splicing factor mutations, commonly associated with MDS, as a consistent finding after ven/aza treatment. These data add to our understanding of the effects of ven/aza on AML disease biology and provide details on molecular depth of remission that can guide prospective trials in the future.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina , Compuestos Bicíclicos Heterocíclicos con Puentes , Leucemia Mieloide Aguda , Mutación , Neoplasia Residual , Nucleofosmina , Sulfonamidas , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/diagnóstico , Sulfonamidas/uso terapéutico , Sulfonamidas/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Anciano , Masculino , Femenino , Azacitidina/uso terapéutico , Azacitidina/administración & dosificación , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Reacción en Cadena de la Polimerasa/métodos , Pronóstico , Anciano de 80 o más Años , Estudios Retrospectivos , Adulto , Resultado del Tratamiento
4.
Haematologica ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934082

RESUMEN

The treatment of blast phase chronic myeloid leukemia (bpCML) remains a challenge due at least in part to drug resistance of leukemia stem cells (LSCs). Recent clinical evidence suggests that the BCL-2 inhibitor venetoclax in combination with ABL-targeting tyrosine kinase inhibitors (TKIs) can eradicate bpCML LSCs. In this report, we employed preclinical models of bpCML to investigate the efficacy and underlying mechanism of LSC-targeting with venetoclax/TKI combinations. Transcriptional analysis of LSCs exposed to venetoclax and dasatinib revealed upregulation of genes involved in lysosomal biology, in particular lysosomal acid lipase A (LIPA), a regulator of free fatty acids. Metabolomic analysis confirmed increased levels of free fatty acids in response to venetoclax/dasatinib. Pre-treatment of leukemia cells with bafilomycin, a specific lysosome inhibitor, or genetic perturbation of LIPA, resulted in increased sensitivity of leukemia cells toward venetoclax/dasatinib, implicating LIPA in treatment resistance. Importantly, venetoclax/dasatinib treatment does not affect normal stem cell function, suggestive of a leukemia-specific response. These results demonstrate that venetoclax/dasatinib is an LSCselective regimen in bpCML and that disrupting LIPA and fatty acid transport enhances venetoclax/dasatinib response in targeting LSCs, providing a rationale for exploring lysosomal disruption as an adjunct therapeutic strategy to prolong disease remission.

5.
Haematologica ; 108(10): 2616-2625, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37051756

RESUMEN

Venetoclax+azacitidine is the standard of care for newly-diagnosed patients with acute myeloid leukemia (AML) for whom intensive chemotherapy is inappropriate. Efforts to optimize this regimen are necessary. We designed a clinical trial to investigate two hypotheses: i) higher doses of venetoclax are tolerable and more effective, and ii) azacitidine can be discontinued after deep remissions. Forty-two newly diagnosed AML patients were enrolled in the investigator-initiated High Dose Discontinuation Azacitidine+Venetoclax (HiDDAV) Study (clinicaltrials gov. Identifier: NCT03466294). Patients received one to three "induction" cycles of venetoclax 600 mg daily with azacitidine. Responders received MRD-positive or MRDnegative "maintenance" arms: azacitidine with 400 mg venetoclax or 400 mg venetoclax alone, respectively. The toxicity profile of HiDDAV was similar to 400 mg venetoclax. The overall response rate was 66.7%; the duration of response (DOR), event-free survival (EFS) and overall survival were 12.9, 7.8 and 9.8 months, respectively. The MRD negativity rate was 64.3% by flow cytometry and 25.0% when also measured by droplet digital polymerase chain recation. MRD-negative patients by flow cytometry had improved DOR and EFS; more stringent measures of MRD negativity were not associated with improved OS, DOR or EFS. Using MRD to guide azacitidine discontinuation did not lead to improved DOR, EFS or OS compared to patients who discontinued azacitidine without MRD guidance. Within the context of this study design, venetoclax doses >400 mg with azacitidine were well tolerated but not associated with discernible clinical improvement, and MRD may not assist in recommendations to discontinue azacitidine. Other strategies to optimize, and for some patients, de-intensify, venetoclax+azacitidine regimens are needed.


Asunto(s)
Azacitidina , Leucemia Mieloide Aguda , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Neoplasia Residual/tratamiento farmacológico
6.
PLoS Comput Biol ; 18(1): e1009490, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041659

RESUMEN

Lévy flight is a type of random walk that characterizes the behaviour of many natural phenomena studied across a multiplicity of academic disciplines; within biology specifically, the behaviour of fish, birds, insects, mollusks, bacteria, plants, slime molds, t-cells, and human populations. The Lévy flight foraging hypothesis states that because Lévy flights can maximize an organism's search efficiency, natural selection should result in Lévy-like behaviour. Empirical and theoretical research has provided ample evidence of Lévy walks in both extinct and extant species, and its efficiency across models with a diversity of resource distributions. However, no model has addressed the maintenance of Lévy flight foraging through evolutionary processes, and existing models lack ecological breadth. We use numerical simulations, including lineage-based models of evolution with a distribution of move lengths as a variable and heritable trait, to test the Lévy flight foraging hypothesis. We include biological and ecological contexts such as population size, searching costs, lifespan, resource distribution, speed, and consider both energy accumulated at the end of a lifespan and averaged over a lifespan. We demonstrate that selection often results in Lévy-like behaviour, although conditional; smaller populations, longer searches, and low searching costs increase the fitness of Lévy-like behaviour relative to Brownian behaviour. Interestingly, our results also evidence a bet-hedging strategy; Lévy-like behaviour reduces fitness variance, thus maximizing geometric mean fitness over multiple generations.


Asunto(s)
Conducta Apetitiva/fisiología , Evolución Molecular , Aptitud Genética , Modelos Biológicos , Modelos Estadísticos , Algoritmos , Animales , Biología Computacional , Aptitud Genética/genética , Aptitud Genética/fisiología , Dinámica Poblacional , Selección Genética/genética , Selección Genética/fisiología
7.
Blood ; 134(4): 389-394, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31101624

RESUMEN

We have previously demonstrated that oxidative phosphorylation is required for the survival of human leukemia stem cells (LSCs) from patients with acute myeloid leukemia (AML). More recently, we demonstrated that LSCs in patients with de novo AML rely on amino acid metabolism to drive oxidative phosphorylation. Notably, although overall levels of amino acids contribute to LSC energy metabolism, our current findings suggest that cysteine may be of particular importance for LSC survival. We demonstrate that exogenous cysteine is metabolized exclusively to glutathione. Upon cysteine depletion, glutathione synthesis is impaired, leading to reduced glutathionylation of succinate dehydrogenase A (SDHA), a key component of electron transport chain complex (ETC) II. Loss of SDHA glutathionylation impairs ETC II activity, thereby inhibiting oxidative phosphorylation, reducing production of ATP, and leading to LSC death. Given the role of cysteine in driving LSC energy production, we tested cysteine depletion as a potential therapeutic strategy. Using a novel cysteine-degrading enzyme, we demonstrate selective eradication of LSCs, with no detectable effect on normal hematopoietic stem/progenitor cells. Together, these findings indicate that LSCs are aberrantly reliant on cysteine to sustain energy metabolism, and that targeting this axis may represent a useful therapeutic strategy.


Asunto(s)
Cisteína/metabolismo , Complejo II de Transporte de Electrones/antagonistas & inhibidores , Leucemia Mieloide Aguda/metabolismo , Células Madre Neoplásicas/metabolismo , Adenosina Trifosfato/metabolismo , Biomarcadores , Metabolismo Energético , Glutatión/metabolismo , Humanos , Oxidación-Reducción , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo
8.
Haematologica ; 105(3): 585-597, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31101752

RESUMEN

Rheumatoid arthritis (RA) is a debilitating autoimmune disease characterized by chronic inflammation and progressive destruction of joint tissue. It is also characterized by aberrant blood phenotypes including anemia and suppressed lymphopoiesis that contribute to morbidity in RA patients. However, the impact of RA on hematopoietic stem cells (HSC) has not been fully elucidated. Using a collagen-induced mouse model of human RA, we identified systemic inflammation and myeloid overproduction associated with activation of a myeloid differentiation gene program in HSC. Surprisingly, despite ongoing inflammation, HSC from arthritic mice remain in a quiescent state associated with activation of a proliferation arrest gene program. Strikingly, we found that inflammatory cytokine blockade using the interleukin-1 receptor antagonist anakinra led to an attenuation of inflammatory arthritis and myeloid expansion in the bone marrow of arthritic mice. In addition, anakinra reduced expression of inflammation-driven myeloid lineage and proliferation arrest gene programs in HSC of arthritic mice. Altogether, our findings show that inflammatory cytokine blockade can contribute to normalization of hematopoiesis in the context of chronic autoimmune arthritis.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Enfermedades Autoinmunes , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Citocinas , Modelos Animales de Enfermedad , Humanos , Ratones
9.
Blood ; 128(13): 1671-8, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27421961

RESUMEN

Most cancers evolve over time as patients initially responsive to therapy acquire resistance to the same drugs at relapse. Cancer stem cells have been postulated to represent a therapy-refractory reservoir for relapse, but formal proof of this model is lacking. We prospectively characterized leukemia stem cell populations (LSCs) from a well-defined cohort of patients with acute myelogenous leukemia (AML) at diagnosis and relapse to assess the effect of the disease course on these critical populations. Leukemic samples were collected from patients with newly diagnosed AML before therapy and after relapse, and LSC frequency was assessed by limiting dilution analyses. LSC populations were identified using fluorescent-labeled cell sorting and transplantation into immunodeficient NOD/SCID/interleukin 2 receptor γ chain null mice. The surface antigen expression profiles of pretherapy and postrelapse LSCs were determined for published LSC markers. We demonstrate a 9- to 90-fold increase in LSC frequency between diagnosis and relapse. LSC activity at relapse was identified in populations of leukemic blasts that did not demonstrate this activity before treatment and relapse. In addition, we describe genetic instability and exceptional phenotypic changes that accompany the evolution of these new LSC populations. This study is the first to characterize the evolution of LSCs in vivo after chemotherapy, identifying a dramatic change in the physiology of primitive AML cells when the disease progresses. Taken together, these findings provide a new frame of reference by which to evaluate candidate AML therapies in which both disease control and the induction of more advanced forms of disease should be considered.


Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores de Tumor/inmunología , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Inmunofenotipificación , Leucemia Mieloide Aguda/inmunología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Trasplante de Neoplasias , Células Madre Neoplásicas/inmunología , Estudios Prospectivos , Recurrencia , Adulto Joven
11.
J Biol Chem ; 291(42): 21984-22000, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27573247

RESUMEN

Although multidrug approaches to cancer therapy are common, few strategies are based on rigorous scientific principles. Rather, drug combinations are largely dictated by empirical or clinical parameters. In the present study we developed a strategy for rational design of a regimen that selectively targets human acute myelogenous leukemia (AML) stem cells. As a starting point, we used parthenolide, an agent shown to target critical mechanisms of redox balance in primary AML cells. Next, using proteomic, genomic, and metabolomic methods, we determined that treatment with parthenolide leads to induction of compensatory mechanisms that include up-regulated NADPH production via the pentose phosphate pathway as well as activation of the Nrf2-mediated oxidative stress response pathway. Using this knowledge we identified 2-deoxyglucose and temsirolimus as agents that can be added to a parthenolide regimen as a means to inhibit such compensatory events and thereby further enhance eradication of AML cells. We demonstrate that the parthenolide, 2-deoxyglucose, temsirolimus (termed PDT) regimen is a potent means of targeting AML stem cells but has little to no effect on normal stem cells. Taken together our findings illustrate a comprehensive approach to designing combination anticancer drug regimens.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Desoxiglucosa/farmacología , Femenino , Humanos , Leucemia Mieloide Aguda/patología , Masculino , NADP/biosíntesis , Células Madre Neoplásicas/patología , Sesquiterpenos/farmacología , Sirolimus/análogos & derivados , Sirolimus/farmacología , Regulación hacia Arriba/efectos de los fármacos
12.
Stem Cells ; 32(5): 1124-35, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24458840

RESUMEN

We discovered that glioblastoma (GBM) cells use Cool-1/ß-pix to inhibit normal activation of the c-Cbl ubiquitin ligase via the redox/Fyn/c-Cbl pathway and that c-Cbl inhibition is critical for GBM cell function. Restoring normal c-Cbl activity by Cool-1 knockdown in vitro reduced GBM cell division, almost eliminated generation of adhesion-independent spheroids, reduced the representation of cells expressing antigens thought to identify tumor initiating cells (TICs), reduced levels of several proteins of critical importance in TIC function (such as Notch-1 and Sox2), and increased sensitivity to BCNU (carmustine) and temozolomide (TMZ). In vivo, Cool-1 knockdown greatly suppressed the ability of GBM cells to generate tumors, an outcome that was c-Cbl dependent. In contrast, Cool-1 knockdown did not reduce division or increase BCNU or TMZ sensitivity in primary glial progenitor cells and Cool-1/c-Cbl complexes were not found in normal brain tissue. Our studies provide the first evidence that Cool-1 may be critical in the biology of human tumors, that suppression of c-Cbl by Cool-1 may be critical for generation of at least a subset of GBMs and offer a novel target that appears to be selectively necessary for TIC function and modulates chemoresistance in GBM cells. Targeting such proteins that inhibit c-Cbl offers potentially attractive opportunities for therapeutic development.


Asunto(s)
Proliferación Celular , Glioblastoma/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Animales , Antineoplásicos Alquilantes/farmacología , Western Blotting , Carmustina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Citometría de Flujo , Glioblastoma/genética , Glioblastoma/patología , Células HEK293 , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Interferencia de ARN , Factores de Intercambio de Guanina Nucleótido Rho/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Esferoides Celulares/metabolismo , Temozolomida , Trasplante Heterólogo , Carga Tumoral/genética , Células Tumorales Cultivadas
13.
Clin Cancer Res ; 30(14): 3023-3035, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723281

RESUMEN

PURPOSE: Immunomodulatory drugs (IMiDs), such as lenalidomide and pomalidomide, are a cornerstone of multiple myeloma (MM) therapies, yet the disease inevitably becomes refractory. IMiDs exert cytotoxicity by inducing cereblon-dependent proteasomal degradation of IKZF1 and IKZF3, resulting in downregulation of the oncogenic transcription factors IRF4 and MYC. To date, clinical IMiD resistance independent of cereblon or IKZF1/3 has not been well explored. Here, we investigated the roles of IRF4 and MYC in this context. EXPERIMENTAL DESIGN: Using bone marrow aspirates from patients with IMiD-naïve or refractory MM, we examined IKZF1/3 protein levels and IRF4/MYC gene expression following ex vivo pomalidomide treatment via flow cytometry and qPCR. We also assessed exvivo sensitivity to the MYC inhibitor MYCi975 using flow cytometry. RESULTS: We discovered that although pomalidomide frequently led to IKZF1/3 degradation in MM cells, it did not affect MYC gene expression in most IMiD-refractory samples. We subsequently demonstrated that MYCi975 exerted strong anti-MM effects in both IMiD-naïve and -refractory samples. Unexpectedly, we identified a cluster of differentiation 8+ (CD8+ T) cells from patients with MM as crucial effectors of MYCi975-induced cytotoxicity in primary MM samples, and we discovered that MYCi975 enhanced the cytotoxic functions of memory CD8+ T cells. We lastly observed synergy between MYCi975 and pomalidomide in IMiD-refractory samples, suggesting that restoring MYC downregulation can re-sensitize refractory MM to IMiDs. CONCLUSIONS: Our study supports the concept that MYC represents an Achilles' heel in MM across disease states and that MYCi975 may be a promising therapeutic for patients with MM, particularly in combination with IMiDs.


Asunto(s)
Linfocitos T CD8-positivos , Resistencia a Antineoplásicos , Factor de Transcripción Ikaros , Agentes Inmunomoduladores , Factores Reguladores del Interferón , Mieloma Múltiple , Proteínas Proto-Oncogénicas c-myc , Talidomida , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Mieloma Múltiple/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Transcripción Ikaros/metabolismo , Factor de Transcripción Ikaros/genética , Talidomida/análogos & derivados , Talidomida/farmacología , Agentes Inmunomoduladores/farmacología , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Línea Celular Tumoral , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Femenino , Masculino
14.
Cancer Discov ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787341

RESUMEN

Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. While venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e. OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance.

15.
Artículo en Inglés | MEDLINE | ID: mdl-37695974

RESUMEN

Virtual reality (VR) research has provided overviews of locomotion techniques, how they work, their strengths and overall user experience. Considerable research has investigated new methodologies, particularly machine learning to develop redirection algorithms. To best support the development of redirection algorithms through machine learning, we must understand how best to replicate human navigation and behaviour in VR, which can be supported by the accumulation of results produced through live-user experiments. However, it can be difficult to identify, select and compare relevant research without a pre-existing framework in an ever-growing research field. Therefore, this work aimed to facilitate the ongoing structuring and comparison of the VR-based natural walking literature by providing a standardised framework for researchers to utilise. We applied thematic analysis to study methodology descriptions from 140 VR-based papers that contained live-user experiments. From this analysis, we developed the LoCoMoTe framework with three themes: navigational decisions, technique implementation, and modalities. The LoCoMoTe framework provides a standardised approach to structuring and comparing experimental conditions. The framework should be continually updated to categorise and systematise knowledge and aid in identifying research gaps and discussions.

16.
Metabolites ; 13(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37110126

RESUMEN

Recent advances in targeting leukemic stem cells (LSCs) using venetoclax with azacitidine (ven + aza) has significantly improved outcomes for de novo acute myeloid leukemia (AML) patients. However, patients who relapse after traditional chemotherapy are often venetoclax-resistant and exhibit poor clinical outcomes. We previously described that fatty acid metabolism drives oxidative phosphorylation (OXPHOS) and acts as a mechanism of LSC survival in relapsed/refractory AML. Here, we report that chemotherapy-relapsed primary AML displays aberrant fatty acid and lipid metabolism, as well as increased fatty acid desaturation through the activity of fatty acid desaturases 1 and 2, and that fatty acid desaturases function as a mechanism of recycling NAD+ to drive relapsed LSC survival. When combined with ven + aza, the genetic and pharmacologic inhibition of fatty acid desaturation results in decreased primary AML viability in relapsed AML. This study includes the largest lipidomic profile of LSC-enriched primary AML patient cells to date and indicates that inhibition of fatty acid desaturation is a promising therapeutic target for relapsed AML.

17.
Cancers (Basel) ; 15(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38001595

RESUMEN

An antibody-drug conjugate (ADC) targeting CD46 conjugated to monomethyl auristatin has a potent anti-myeloma effect in cell lines in vitro and in vivo, and patient samples treated ex vivo. Here, we tested if CD46-ADC may have the potential to target MM-initiating cells (MM-ICs). CD46 expression was measured on primary MM cells with a stem-like phenotype. A patient-derived xenograft (PDX) model was implemented utilizing implanted fetal bone fragments to provide a humanized microenvironment. Engraftment was monitored via serum human light chain ELISA, and at sacrifice via bone marrow and bone fragment flow cytometry. We then tested MM regeneration in PDX by treating mice with CD46-ADC or the nonbinding control-ADC. MM progenitor cells from patients that exhibit high aldehyde dehydrogenase activity also have a high expression of CD46. In PDX, newly diagnosed MM patient samples engrafted significantly more compared to relapsed/refractory samples. In mice transplanted with newly diagnosed samples, CD46-ADC treatment showed significantly decreased engraftment compared to control-ADC treatment. Our data further support the targeting of CD46 in MM. To our knowledge, this is the first study to show preclinical drug efficacy in a PDX model of MM. This is an important area for future study, as patient samples but not cell lines accurately represent intratumoral heterogeneity.

18.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873284

RESUMEN

We previously reported that acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL2, creating a therapeutic opportunity to target LSCs using the BCL2 inhibitor drug venetoclax. While venetoclax-based regimens have indeed shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence mechanisms that dictate venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e., OXPHOS) status with relatively high steady-state levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake sharply reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in the biology of LSCs and provide a therapeutic avenue for clinical management of venetoclax resistance.

19.
Cancer Discov ; 13(9): 2032-2049, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37358260

RESUMEN

The BCL2 inhibitor venetoclax has recently emerged as an important component of acute myeloid leukemia (AML) therapy. Notably, use of this agent has revealed a previously unrecognized form of pathogenesis characterized by monocytic disease progression. We demonstrate that this form of disease arises from a fundamentally different type of leukemia stem cell (LSC), which we designate as monocytic LSC (m-LSC), that is developmentally and clinically distinct from the more well-described primitive LSC (p-LSC). The m-LSC is distinguished by a unique immunophenotype (CD34-, CD4+, CD11b-, CD14-, CD36-), unique transcriptional state, reliance on purine metabolism, and selective sensitivity to cladribine. Critically, in some instances, m-LSC and p-LSC subtypes can co-reside in the same patient with AML and simultaneously contribute to overall tumor biology. Thus, our findings demonstrate that LSC heterogeneity has direct clinical significance and highlight the need to distinguish and target m-LSCs as a means to improve clinical outcomes with venetoclax-based regimens. SIGNIFICANCE: These studies identify and characterize a new type of human acute myeloid LSC that is responsible for monocytic disease progression in patients with AML treated with venetoclax-based regimens. Our studies describe the phenotype, molecular properties, and drug sensitivities of this unique LSC subclass. This article is featured in Selected Articles from This Issue, p. 1949.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Antígenos CD34/metabolismo , Antígenos CD34/uso terapéutico , Leucemia Mieloide Aguda/genética , Células Madre Neoplásicas/metabolismo , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA