Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466904

RESUMEN

Reconstruction of segmental bone defects by autologous bone grafting is still the standard of care but presents challenges including anatomical availability and potential donor site morbidity. The process of 3D bioprinting, the application of 3D printing for direct fabrication of living tissue, opens new possibilities for highly personalized tissue implants, making it an appealing alternative to autologous bone grafts. One of the most crucial hurdles for the clinical application of 3D bioprinting is the choice of a suitable cell source, which should be minimally invasive, with high osteogenic potential, with fast, easy expansion. In this study, mesenchymal progenitor cells were isolated from clinically relevant human bone biopsy sites (explant cultures from alveolar bone, iliac crest and fibula; bone marrow aspirates; and periosteal bone shaving from the mastoid) and 3D bioprinted using projection-based stereolithography. Printed constructs were cultivated for 28 days and analyzed regarding their osteogenic potential by assessing viability, mineralization, and gene expression. While viability levels of all cell sources were comparable over the course of the cultivation, cells obtained by periosteal bone shaving showed higher mineralization of the print matrix, with gene expression data suggesting advanced osteogenic differentiation. These results indicate that periosteum-derived cells represent a highly promising cell source for translational bioprinting of bone tissue given their superior osteogenic potential as well as their minimally invasive obtainability.


Asunto(s)
Células de la Médula Ósea/metabolismo , Trasplante Óseo/métodos , Huesos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Biosíntesis de Proteínas , Ingeniería de Tejidos/métodos , Adulto , Bioimpresión/métodos , Células de la Médula Ósea/citología , Huesos/citología , Diferenciación Celular/genética , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Osteogénesis/genética , Impresión Tridimensional , Andamios del Tejido , Trasplante Autólogo
2.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245213

RESUMEN

Intervertebral disc (IVD) herniation and degeneration is a major source of back pain. In order to regenerate a herniated and degenerated disc, closure of the anulus fibrosus (AF) is of crucial importance. For molecular characterization of AF, genome-wide Affymetrix HG-U133plus2.0 microarrays of native AF and cultured cells were investigated. To evaluate if cells derived from degenerated AF are able to initiate gene expression of a regenerative pattern of extracellular matrix (ECM) molecules, cultivated cells were stimulated with bone morphogenetic protein 2 (BMP2), transforming growth factor ß1 (TGFß1) or tumor necrosis factor-α (TNFα) for 24 h. Comparative microarray analysis of native AF tissues showed 788 genes with a significantly different gene expression with 213 genes more highly expressed in mild and 575 genes in severe degenerated AF tissue. Mild degenerated native AF tissues showed a higher gene expression of common cartilage ECM genes, whereas severe degenerated AF tissues expressed genes known from degenerative processes, including matrix metalloproteinases (MMP) and bone associated genes. During monolayer cultivation, only 164 differentially expressed genes were found. The cells dedifferentiated and altered their gene expression profile. RTD-PCR analyses of BMP2- and TGFß1-stimulated cells from mild and severe degenerated AF tissue after 24 h showed an increased expression of cartilage associated genes. TNFα stimulation increased MMP1, 3, and 13 expression. Cells derived from mild and severe degenerated tissues could be stimulated to a comparable extent. These results give hope that regeneration of mildly but also strongly degenerated disc tissue is possible.


Asunto(s)
Anillo Fibroso/metabolismo , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/genética , Degeneración del Disco Intervertebral/metabolismo , Desplazamiento del Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Anillo Fibroso/patología , Proteína Morfogenética Ósea 2/farmacología , Células Cultivadas , Matriz Extracelular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/patología , Desplazamiento del Disco Intervertebral/genética , Desplazamiento del Disco Intervertebral/patología , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regeneración/efectos de los fármacos , Regeneración/genética , Factor de Crecimiento Transformador beta1/farmacología , Factor de Necrosis Tumoral alfa/farmacología
3.
Int J Mol Sci ; 19(8)2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30060561

RESUMEN

Intervertebral disc degeneration is a major source of back pain. For intervertebral disc regeneration after herniation a fast closure of anulus fibrosus (AF) defects is crucial. Here, the use of the C-C motif chemokine ligand 25 (CCL)25 in comparison to differentiation factors such as transforming growth factor (TGF)ß3, bone morphogenetic protein (BMP)2, BMP7, BMP12, and BMP14 (all in concentrations of 10, 50 and 100 ng/mL) was tested in an in vitro micro mass pellet model with isolated and cultivated human AF-cells (n = 3) to induce and enhance AF-matrix formation. The pellets were differentiated (serum-free) with supplementation of the factors. After 28 days all used factors induced proteoglycan production (safranin O staining) and collagen type I production (immunohistochemical staining) in at least one of the tested concentrations. Histomorphometric scoring revealed that TGFß3 delivered the strongest induction of proteoglycan production in all three concentrations. Furthermore, it was the only factor able to facilitate collagen type II production, even higher than in native tissue samples. CCL25 was also able to induce proteoglycan and collagen type I production comparable to several BMPs. CCL25 could additionally induce migration of AF-cells in a chemotaxis assay and therefore possibly aid in regeneration processes after disc herniation by recruiting AF-cells.


Asunto(s)
Anillo Fibroso/citología , Anillo Fibroso/metabolismo , Movimiento Celular , Quimiocinas CC/metabolismo , Quimiotaxis , Matriz Extracelular/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Células Cultivadas , Colágeno Tipo I/metabolismo , Humanos , Proteoglicanos/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo
4.
Differentiation ; 85(3): 78-90, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23644554

RESUMEN

It is generally accepted that after differentiation bone marrow mesenchymal stem cells (MSC) become lineage restricted and unipotent in an irreversible manner. However, current results imply that even terminally differentiated cells transdifferentiate across lineage boundaries and therefore act as a progenitor cells for other lineages. This leads to the questions that whether transdifferentiation occurs via direct cell-to-cell conversion or dedifferentiation to a progenitor cells and subsequent differentiation, and whether MSC potency decreases or increases during differentiation. To address these questions, MSC were differentiated into adipogenic lineage cells, followed by dedifferentiation. The process of dedifferentiation was also confirmed by single cell clonal analysis. Finally the dedifferentiated cells were used for adipogenesis, osteogenesis and chondrogenesis. Histology, FACS, qPCR and GeneChip analyses of undifferentiated MSC, adipogenic-differentiated and dedifferentiated cells were performed. Interestingly, gene profiling and bioinformatics demonstrated that upregulation (DHCR24, G0S2, MAP2K6, SESN3) and downregulation (DST, KAT2, MLL5, RB1, SMAD3, ZAK) of distinct genes have an association with cell cycle arrest in adipogenic-differentiated cells and perhaps narrow down the lineage potency. However, the upregulation (CCND1, CHEK, HGF, HMGA2, SMAD3) and downregulation (CCPG1, RASSF4, RGS2) of these genes have an association with cell cycle progression and maybe motivate dedifferentiation of adipogenic-differentiated cells. We found that dedifferentiated cells have a multilineage potency comparable to MSC, and also observed the associative role of proliferation genes with cell cycle arrest and progression. Concluded, our results indicate that transdifferentiation of adipogenic-differentiated cells into osteogenic- or chondrogenic-differentiated cells proceeds via dedifferentiation and correlates with cell cycle arresting and deriving genes. Regarding clinical use, the knowledge of potency and underlying mechanisms are prerequisites.


Asunto(s)
Tejido Adiposo/citología , Desdiferenciación Celular , Diferenciación Celular , Transdiferenciación Celular , Células Madre Mesenquimatosas/citología , Células de la Médula Ósea/citología , Puntos de Control del Ciclo Celular/genética , Células Cultivadas , Condrogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteogénesis/genética , Células Madre/citología , Regulación hacia Arriba
5.
Tissue Eng Regen Med ; 19(6): 1311-1320, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35816226

RESUMEN

BACKGROUND: Tissue defects in the annulus fibrosus (AF) due to intervertebral disc (IVD) degeneration or after nucleodiscectomy have little self-healing capacity. To prevent progressive degeneration of the IVD, the AF must be repaired. Biological closure has not yet been achieved and is a challenge for the research community. In this study, a scaffold made of absorbable poly (glycolic acid) (PGA) and hyaluronan (HA) that exhibit excellent biocompatibility and cell colonization properties was used to repair AF defects in an ovine model. METHODS: A partial resection was performed in AF in L3/4 or L4/5 of 10 sheep and PGA-HA scaffolds were implanted on the defects (n = 5), while defects in the control group were left untreated (n = 5). Three months post-operation, the lumbar discs were sectioned and stained with hematoxylin and eosin and safranin-O/fast-green. Histological features including proteoglycan content, annular structure, cellular morphology, blood vessel ingrowth and tear/cleft formation were scored using a modified scoring scheme by 3 investigators and evaluated by a pathologist independently. RESULTS: The treated AF exhibited significantly enhanced repair tissue structure with signs of proteoglycan formation compared to the untreated group. The median scores were 4.3 for the treated and 9.8 for the untreated group. Cystic degeneration, perivascular infiltration, inflammation and necrosis were only present in the untreated group. Blood vessel ingrowth and tear/cleft formation were increased, though not significant, in the untreated group while cell morphology was comparable in both groups. CONCLUSION: PGA-HA scaffolds used for AF closure support repair tissue formation in an ovine lumbar disc defect model.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Disco Intervertebral , Animales , Anillo Fibroso/patología , Ácido Hialurónico , Disco Intervertebral/patología , Disco Intervertebral/cirugía , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/cirugía , Proteoglicanos , Ovinos
6.
Exp Cell Res ; 315(8): 1468-79, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19168060

RESUMEN

Recruitment of mesenchymal stem cells (MSC) to tissue damages is a promising approach for in situ tissue regeneration. The physiological mechanisms and regulatory processes of MSC trafficking to injured tissue remain poorly understood. However, the pivotal role of chemokines in MSC recruitment has already been shown. The aim of this study was to determine the migratory potential and the gene expression profile of MSC stimulated with the CC chemokine CCL25 (TECK). Bone marrow derived human MSC were exposed to different doses of CCL25 in a standardized chemotaxis assay. Microarray gene expression profiling and pathway analysis were performed for CCL25 stimulated MSC. Maximum migration of MSC towards CCL25 was observed at 10(3) nM. Microarray analysis revealed an induction of molecules directly involved in chemotaxis and homing of bone marrow cells (CXCL1-3, CXCL8, PDE4B), cytoskeletal and membrane reorganisation (CXCL8, PLD1, IGFBP1), cellular polarity (PLD1), and cell movement (CXCL1-3, CXCL6, CXCL8, PTGS2, PDE4B, TGM2). Respective chemokine secretion was confirmed by protein membrane-array analysis. The activation of CXCR2 ligands (CXCL1-3, CXCL5-6, CXCL8) and a LIF-receptor/gp130 ligand (LIF) indicated an involvement of the respective signaling pathways during initiation of chemotaxis and migration. These results suggest CCL25 as a new potential candidate for further in situ regeneration approaches.


Asunto(s)
Movimiento Celular , Quimiocinas CC/farmacología , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/efectos de los fármacos , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Cartilage ; 11(2): 192-202, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-29577749

RESUMEN

OBJECTIVE: The objective was to evaluate the proliferating, migratory and extracellular matrix (ECM) forming potential of annulus fibrosus cells derived from early (edAFC) or advanced (adAFC) degenerative tissue and their usability as a possible cell source for regenerative approaches for AF closure. DESIGN: EdAFC (n = 5 Pfirrman score of 2-3) and adAFC (n = 5 Pfirrman score of 4-5) were isolated from tissue of patients undergoing spine stabilizing surgery. Cell migration on stimulation with human serum (HS), platelet-rich plasma (PRP), and transforming growth factor ß-3 (TGFB3) was assessed by migration assay and proliferation was assessed on stimulation with HS. Induction of ECM synthesis was evaluated by gene expression analysis of AF-related genes in three-dimensional scaffold cultures that have been stimulated with 5% PRP or 10 ng/mL TGFB3 and histologically by collagen type I, type II, alcian blue, and safranin-O staining. RESULTS: EdAFC and adAFC were significantly attracted by 10% HS and 5% PRP. Additionally, both cell groups proliferated under stimulation with HS. Stimulation with 10 ng/mL TGFB3 showed significant induction of gene expression of collagen type II and aggrecan, while 5% PRP decreased the expression of collagen type I. Both cell groups showed formation of AF-like ECM after stimulation with TGFB3, whereas stimulation with PRP did not. CONCLUSIONS: Our study demonstrated that AF cells retain their potential for proliferation, migration, and ECM formation independent of the degeneration status of the tissue. Proliferation, migration, and ECM synthesis of the endogenous AF cells can be supported by different supplements. Hence, endogenous AF cells might be a suitable cell source for a regenerative repair approaches.


Asunto(s)
Anillo Fibroso/citología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Matriz Extracelular/metabolismo , Degeneración del Disco Intervertebral/patología , Células Cultivadas , Humanos , Disco Intervertebral/patología , Plasma Rico en Plaquetas/metabolismo , Regeneración/fisiología , Suero/metabolismo , Factor de Crecimiento Transformador beta3/administración & dosificación
8.
Cell Tissue Res ; 336(2): 225-36, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19296133

RESUMEN

In situ tissue engineering is a promising approach in regenerative medicine, with the possibility that adult stem or progenitor cells will be guided chemotactically to a tissue defect and subsequently differentiate into the surrounding tissue type. Mesenchymal stem cells (MSC) represent attractive candidate cells. Chemokines such as CXCL12 (SDF-1alpha) chemoattract MSC, but little is known about the molecular processes involved in the chemotaxis and migration of MSC. In this study, MSC recruitment by CXCL12 was investigated by genome-wide microarray analysis. The dose-dependent migration potential of bone-marrow-derived MSC toward CXCL12 was measured in an in vitro assay, with a maximum being recorded at a concentration of 1,000 nM CXCL12. Microarray analysis of MSC stimulated with CXCL12 and non-stimulated controls showed 30 differentially expressed genes (24 induced and six repressed). Pathway analysis revealed 11 differentially expressed genes involved in cellular movement and cytokine-cytokine receptor interaction, including those for migratory inducers such as the chemokines CXCL8 and CCL26, the leukocyte inhibitory factor, secretogranin II, and prostaglandin endoperoxide synthase 2. These results were confirmed by real-time polymerase chain reaction for selected genes. The obtained data provide further insights into the molecular mechanisms involved in chemotactic processes in cell migration and designate CXCL12 as a promising candidate for in situ recruitment in regenerative therapies.


Asunto(s)
Quimiocina CXCL12/farmacología , Quimiotaxis/efectos de los fármacos , Perfilación de la Expresión Génica , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Adulto , Separación Celular , Forma de la Célula/efectos de los fármacos , Células Cultivadas , Análisis por Conglomerados , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Eur J Cell Biol ; 87(6): 365-76, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18501472

RESUMEN

For bone repair, transplantation of periosteal progenitor cells (PCs), which had been amplified within supportive scaffolds, is applied clinically. More innovative bone tissue engineering approaches focus on the in situ recruitment of stem and progenitor cells to defective sites and their subsequent use for guided tissue repair. Chemokines are known to induce the directed migration of bone marrow CD34(-) mesenchymal stem cells (MSCs). The aim of our study was to determine the chemokine receptor expression profile of human CD34(-) PCs and to demonstrate that these cells migrate upon stimulation with selected chemokines. PCs were isolated from periosteum of the mastoid bone and displayed a homogenous cell population presenting an MSC-related cell-surface antigen profile (ALCAM(+), SH2(+), SH3(+), CD14(-), CD34(-), CD44(+), CD45(-), CD90(+)). The expression profile of chemokine receptors was determined by real-time PCR and immunohistochemistry. Both methods consistently demonstrated that PCs express receptors of all four chemokine subfamilies CC, CXC, CX(3)C, and C. Migration of PCs and a dose-dependent migratory effect of the chemokines CCL2 (MCP1), CCL25 (TECK), CXCL8 (IL8), CXCL12 (SDF1alpha), and CXCL13 (BCA1), but not CCL22 (MDC) were demonstrated using a 96-multiwell chemotaxis assay. In conclusion, for the first time, here we report that human PCs express chemokine receptors, present their profile, and demonstrate a dose-dependent migratory effect of distinct chemokines on these cells. These results are promising towards in situ bone repair therapies based on guiding PCs to bone defects, and encourage further in vivo studies.


Asunto(s)
Células Madre Adultas/inmunología , Movimiento Celular , Quimiocinas CC/metabolismo , Quimiocinas CXC/metabolismo , Apófisis Mastoides/inmunología , Periostio/inmunología , Receptores de Quimiocina/metabolismo , Adulto , Antígenos CD/análisis , Separación Celular , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL13/metabolismo , Relación Dosis-Respuesta Inmunológica , Citometría de Flujo , Perfilación de la Expresión Génica/métodos , Humanos , Inmunohistoquímica , Interleucina-8/metabolismo , Apófisis Mastoides/citología , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Periostio/citología , Reacción en Cadena de la Polimerasa , Receptores de Quimiocina/genética
10.
PLoS One ; 12(5): e0178560, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28562645

RESUMEN

For clinical applications of cells and tissue engineering products it is of importance to characterize the quality of the used cells in detail. Progenitor cells from the periosteum are already routinely applied in the clinics for the regeneration of the maxillary bone. Periosteal cells have, in addition to their potential to differentiate into bone, the ability to develop into cartilage and fat. However, the question arises whether all cells isolated from periosteal biopsies are able to differentiate into all three tissue types, or whether there are subpopulations. For an efficient and approved application in bone or cartilage regeneration the clarification of this question is of interest. Therefore, 83 different clonal cultures of freshly isolated human periosteal cells derived from mastoid periosteum biopsies of 4 donors were generated and growth rates calculated. Differentiation capacities of 51 clonal cultures towards the osteogenic, the chondrogenic, and the adipogenic lineage were investigated. Histological and immunochemical stainings showed that 100% of the clonal cultures differentiated towards the osteogenic lineage, while 94.1% demonstrated chondrogenesis, and 52.9% could be stimulated to adipogenesis. For osteogenesis real-time polymerase chain reaction (PCR) of BGLAP and RUNX2 and for adipogenesis of FABP4 and PPARG confirmed the results. Overall, 49% of the cells exhibited a tripotent potential, 45.1% showed a bipotent potential (without adipogenic differentiation), 3.9% bipotent (without chondrogenic differentiation), and 2% possessed a unipotent osteogenic potential. In FACS analyses, no differences in the marker profile of undifferentiated clonal cultures with bi- and tripotent differentiation capacity were found. Genome-wide microarray analysis revealed 52 differentially expressed genes for clonal subpopulations with or without chondrogenic differentiation capacity, among them DCN, NEDD9, TGFBR3, and TSLP. For clinical applications of periosteal cells in bone regeneration all cells were inducible. For a chondrogenic application a fraction of 6% of the mixed population could not be induced.


Asunto(s)
Huesos/citología , Análisis de la Célula Individual , Células Madre/citología , Biopsia , Diferenciación Celular , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
PLoS One ; 10(5): e0126954, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25993467

RESUMEN

Cell-based regenerative approaches have been suggested as primary or adjuvant procedures for the treatment of degenerated intervertebral disc (IVD) diseases. Our aim was to evaluate the regenerative and immunogenic properties of mildly and severely degenerated cervical nucleus pulposus (NP) cells with regard to cell isolation, proliferation and differentiation, as well as to cell surface markers and co-cultures with autologous or allogeneic peripheral blood mononuclear cells (PBMC) including changes in their immunogenic properties after 3-dimensional (3D)-culture. Tissue from the NP compartment of 10 patients with mild or severe grades of IVD degeneration was collected. Cells were isolated, expanded with and without basic fibroblast growth factor and cultured in 3D fibrin/poly (lactic-co-glycolic) acid transplants for 21 days. Real-time reverse-transcription polymerase chain reaction (RT-PCR) showed the expression of characteristic NP markers ACAN, COL1A1 and COL2A1 in 2D- and 3D-culture with degeneration- and culture-dependent differences. In a 5,6-carboxyfluorescein diacetate N-succinimidyl ester-based proliferation assay, NP cells in monolayer, regardless of their grade of degeneration, did not provoke a significant proliferation response in T cells, natural killer (NK) cells or B cells, not only with donor PBMC, but also with allogeneic PBMC. In conjunction with low inflammatory cytokine expression, analyzed by Cytometric Bead Array and fluorescence-activated cell sorting (FACS), a low immunogenicity can be assumed, facilitating possible therapeutic approaches. In 3D-culture, however, we found elevated immune cell proliferation levels, and there was a general trend to higher responses for NP cells from severely degenerated IVD tissue. This emphasizes the importance of considering the specific immunological alterations when including biomaterials in a therapeutic concept. The overall expression of Fas receptor, found on cultured NP cells, could have disadvantageous implications on their potential therapeutic applications because they could be the targets of cytotoxic T-cell activity acting by Fas ligand-induced apoptosis.


Asunto(s)
Vértebras Cervicales , Disco Intervertebral/fisiología , Adulto , Anciano , Células Cultivadas , Técnicas de Cocultivo , Perfilación de la Expresión Génica , Humanos , Disco Intervertebral/citología , Disco Intervertebral/inmunología , Persona de Mediana Edad
12.
Biotechnol Prog ; 30(1): 142-51, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24124166

RESUMEN

Tendon healing is a time consuming process leading to the formation of a functionally altered reparative tissue. Tissue engineering-based tendon reconstruction is attracting more and more interest. The aim of this study was to establish tenocyte expansion on microcarriers in continuous bioreactor cultures and to study tenocyte behavior during this new approach. Human hamstring tendon-derived tenocytes were expanded in monolayer culture before being seeded at two different seeding densities (2.00 and 4.00 3 106 cells/1000 cm2 surface) on CytodexTM type 3 microcarriers. Tenocytes' vitality, growth kinetics and glucose/ lactic acid metabolism were determined dependent on the seeding densities and stirring velocities (20 or 40 rpm) in a spinner flask bioreactor over a period of 2 weeks. Gene expression profiles of tendon extracellular matrix (ECM) markers (type I/III collagen, decorin, cartilage oligomeric protein [COMP], aggrecan) and the tendon marker scleraxis were analyzed using real time detection polymerase chain reaction (RTD-PCR). Type I collagen and decorin deposition was demonstrated applying immunolabeling. Tenocytes adhered on the carriers, remained vital, proliferated and revealed an increasing glucose consumption and lactic acid formation under all culture conditions. "Bead-to-bead" transfer of cells from one microcarrier to another, a prerequisite for continuous tenocyte expansion, was demonstrated by scanning electron microscopy. Type I and type III collagen gene expression was mainly unaffected, whereas aggrecan and partly also decorin and COMP expression was significantly downregulated compared to monolayer cultures. Scleraxis gene expression revealed no significant regulation on the carriers. In conclusion, tenocytes could be successfully expanded on microcarriers. Therefore, bioreactors are promising tools for continuous tenocyte expansion.


Asunto(s)
Reactores Biológicos , Biotecnología , Técnicas de Cultivo de Célula , Tendones/citología , Adulto , Biotecnología/instrumentación , Biotecnología/métodos , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Forma de la Célula , Células Cultivadas , Proteínas de la Matriz Extracelular/análisis , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
PLoS One ; 8(7): e69754, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922792

RESUMEN

BACKGROUND: During mesenchymal stem cell (MSC) conversion into adipocytes, the adipogenic cocktail consisting of insulin, dexamethasone, indomethacin and 3-isobutyl-1-methylxanthine not only induces adipogenic-specific but also genes for non-adipogenic processes. Therefore, not all significantly expressed genes represent adipogenic-specific marker genes. So, our aim was to filter only adipogenic-specific out of all expressed genes. We hypothesize that exclusively adipogenic-specific genes change their expression during adipogenesis, and reverse during dedifferentiation. Thus, MSC were adipogenic differentiated and dedifferentiated. RESULTS: Adipogenesis and reverse adipogenesis was verified by Oil Red O staining and expression of PPARG and FABP4. Based on GeneChips, 991 genes were differentially expressed during adipogenesis and grouped in 4 clusters. According to bioinformatic analysis the relevance of genes with adipogenic-linked biological annotations, expression sites, molecular functions, signaling pathways and transcription factor binding sites was high in cluster 1, including all prominent adipogenic genes like ADIPOQ, C/EBPA, LPL, PPARG and FABP4, moderate in clusters 2-3, and negligible in cluster 4. During reversed adipogenesis, only 782 expressed genes (clusters 1-3) were reverted, including 597 genes not reported for adipogenesis before. We identified APCDD1, CHI3L1, RARRES1 and SEMA3G as potential adipogenic-specific genes. CONCLUSION: The model system of adipogenesis linked to reverse adipogenesis allowed the filtration of 782 adipogenic-specific genes out of total 991 significantly expressed genes. Database analysis of adipogenic-specific biological annotations, transcription factors and signaling pathways further validated and valued our concept, because most of the filtered 782 genes showed affiliation to adipogenesis. Based on this approach, the selected and filtered genes would be potentially important for characterization of adipogenesis and monitoring of clinical translation for soft-tissue regeneration. Moreover, we report 4 new marker genes.


Asunto(s)
Adipogénesis/genética , Adiposidad/genética , Biomarcadores/metabolismo , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Genoma Humano/genética , Anciano , Sitios de Unión , Desdiferenciación Celular/genética , Separación Celular , Análisis por Conglomerados , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Modelos Biológicos , Transducción de Señal/genética , Factores de Transcripción/metabolismo
14.
Biores Open Access ; 1(6): 297-305, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23514965

RESUMEN

Administration of chondrogenically differentiated mesenchymal stem cells (MSC) is discussed as a promising approach for the regenerative treatment of injured or diseased cartilage. The high-density pellet culture is the standard culture for chondrogenic differentiation, but cells in pellets secrete extracellular matrix (ECM) that they become entrapped in. Protocols for cell isolation from pellets often result in cell damage and dedifferentiation towards less differentiated MSC. Therefore, our aim was to develop a reliable protocol for the isolation of viable, chondrogenically differentiated MSC from high-density pellet cultures. Human bone marrow MSC were chondrogenically stimulated with transforming growth factor-ß3, and the cartilaginous structure of the pellets was verified by alcian blue staining of cartilage proteoglycans, antibody staining of cartilage collagen type II, and quantitative real-time reverse-transcription polymerase chain reaction of the marker genes COL2A1 and SOX9. Trypsin and collagenases II and P were tested alone or in combination, and for different concentrations and times, to find a protocol for optimized pellet digestion. Whereas trypsin was not able to release viable cells, 90-min digestion with 300 U of collagenase II, 20 U of collagenase P, and 2 mM CaCl2 worked quite well and resulted in about 2.5×10(5) cells/pellet. The protocol was further optimized for the separation of released cells and ECM from each other. Cells were alcian blue and collagen type II positive and expressed COL2A1 and SOX9, verifying a chondrogenic character. However, they had different morphological shapes. The ECM was also uniformly alcian blue and collagen type II positive but showed different organizational and structural forms. To conclude, our protocol allows the reliable isolation of a defined number of viable, chondrogenically differentiated MSC from high-density pellet cultures. Such cells, as well as the ECM components, are of interest as research tools and for cartilage tissue engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA