Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Biol ; 22(8): e3002739, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39137238

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) poses a significant threat due to its tendency to evade early detection, frequent metastasis, and the subsequent challenges in devising effective treatments. Processes that govern epithelial-mesenchymal transition (EMT) in PDAC hold promise for advancing novel therapeutic strategies. SAMD1 (SAM domain-containing protein 1) is a CpG island-binding protein that plays a pivotal role in the repression of its target genes. Here, we revealed that SAMD1 acts as a repressor of genes associated with EMT. Upon deletion of SAMD1 in PDAC cells, we observed significantly increased migration rates. SAMD1 exerts its effects by binding to specific genomic targets, including CDH2, encoding N-cadherin, which emerged as a driver of enhanced migration upon SAMD1 knockout. Furthermore, we discovered the FBXO11-containing E3 ubiquitin ligase complex as an interactor and negative regulator of SAMD1, which inhibits SAMD1 chromatin-binding genome-wide. High FBXO11 expression in PDAC is associated with poor prognosis and increased expression of EMT-related genes, underlining an antagonistic relationship between SAMD1 and FBXO11. In summary, our findings provide insights into the regulation of EMT-related genes in PDAC, shedding light on the intricate role of SAMD1 and its interplay with FBXO11 in this cancer type.


Asunto(s)
Carcinoma Ductal Pancreático , Transición Epitelial-Mesenquimal , Proteínas F-Box , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Receptores de LDL , Animales , Humanos , Cadherinas/metabolismo , Cadherinas/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pronóstico , Receptores de LDL/genética , Receptores de LDL/metabolismo
2.
Nucleic Acids Res ; 52(13): 7590-7609, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38801077

RESUMEN

Acute myeloid leukemia (AML) is a hematological malignancy characterized by abnormal proliferation and accumulation of immature myeloid cells in the bone marrow. Inflammation plays a crucial role in AML progression, but excessive activation of cell-intrinsic inflammatory pathways can also trigger cell death. IRF2BP2 is a chromatin regulator implicated in AML pathogenesis, although its precise role in this disease is not fully understood. In this study, we demonstrate that IRF2BP2 interacts with the AP-1 heterodimer ATF7/JDP2, which is involved in activating inflammatory pathways in AML cells. We show that IRF2BP2 is recruited by the ATF7/JDP2 dimer to chromatin and counteracts its gene-activating function. Loss of IRF2BP2 leads to overactivation of inflammatory pathways, resulting in strongly reduced proliferation. Our research indicates that a precise equilibrium between activating and repressive transcriptional mechanisms creates a pro-oncogenic inflammatory environment in AML cells. The ATF7/JDP2-IRF2BP2 regulatory axis is likely a key regulator of this process and may, therefore, represent a promising therapeutic vulnerability for AML. Thus, our study provides new insights into the molecular mechanisms underlying AML pathogenesis and identifies a potential therapeutic target for AML treatment.


Asunto(s)
Inflamación , Leucemia Mieloide Aguda , Factor de Transcripción AP-1 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-1/genética , Inflamación/genética , Inflamación/metabolismo , Línea Celular Tumoral , Factores de Transcripción Activadores/metabolismo , Factores de Transcripción Activadores/genética , Cromatina/metabolismo , Proliferación Celular , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Células HEK293 , Regulación Leucémica de la Expresión Génica , Multimerización de Proteína , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN
3.
Nucleic Acids Res ; 51(2): 574-594, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36537216

RESUMEN

The lysine acetyltransferase KAT6A (MOZ, MYST3) belongs to the MYST family of chromatin regulators, facilitating histone acetylation. Dysregulation of KAT6A has been implicated in developmental syndromes and the onset of acute myeloid leukemia (AML). Previous work suggests that KAT6A is recruited to its genomic targets by a combinatorial function of histone binding PHD fingers, transcription factors and chromatin binding interaction partners. Here, we demonstrate that a winged helix (WH) domain at the very N-terminus of KAT6A specifically interacts with unmethylated CpG motifs. This DNA binding function leads to the association of KAT6A with unmethylated CpG islands (CGIs) genome-wide. Mutation of the essential amino acids for DNA binding completely abrogates the enrichment of KAT6A at CGIs. In contrast, deletion of a second WH domain or the histone tail binding PHD fingers only subtly influences the binding of KAT6A to CGIs. Overexpression of a KAT6A WH1 mutant has a dominant negative effect on H3K9 histone acetylation, which is comparable to the effects upon overexpression of a KAT6A HAT domain mutant. Taken together, our work revealed a previously unrecognized chromatin recruitment mechanism of KAT6A, offering a new perspective on the role of KAT6A in gene regulation and human diseases.


Asunto(s)
Cromatina , Histona Acetiltransferasas , Histonas , Humanos , Cromatina/genética , Islas de CpG/genética , ADN , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Acetilación
4.
PLoS Genet ; 14(1): e1007193, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29381691

RESUMEN

Diverse Polycomb repressive complexes 1 (PRC1) play essential roles in gene regulation, differentiation and development. Six major groups of PRC1 complexes that differ in their subunit composition have been identified in mammals. How the different PRC1 complexes are recruited to specific genomic sites is poorly understood. The Polycomb Ring finger protein PCGF6, the transcription factors MGA and E2F6, and the histone-binding protein L3MBTL2 are specific components of the non-canonical PRC1.6 complex. In this study, we have investigated their role in genomic targeting of PRC1.6. ChIP-seq analysis revealed colocalization of MGA, L3MBTL2, E2F6 and PCGF6 genome-wide. Ablation of MGA in a human cell line by CRISPR/Cas resulted in complete loss of PRC1.6 binding. Rescue experiments revealed that MGA recruits PRC1.6 to specific loci both by DNA binding-dependent and by DNA binding-independent mechanisms. Depletion of L3MBTL2 and E2F6 but not of PCGF6 resulted in differential, locus-specific loss of PRC1.6 binding illustrating that different subunits mediate PRC1.6 loading to distinct sets of promoters. Mga, L3mbtl2 and Pcgf6 colocalize also in mouse embryonic stem cells, where PRC1.6 has been linked to repression of germ cell-related genes. Our findings unveil strikingly different genomic recruitment mechanisms of the non-canonical PRC1.6 complex, which specify its cell type- and context-specific regulatory functions.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , ADN/metabolismo , Factor de Transcripción E2F6/fisiología , Proteínas Nucleares/fisiología , Complejo Represivo Polycomb 1/metabolismo , Factores de Transcripción/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Factor de Transcripción E2F6/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Células Madre Embrionarias Humanas/fisiología , Humanos , Ratones , Células Madre Embrionarias de Ratones/fisiología , Proteínas Nucleares/genética , Unión Proteica/genética , Factores de Transcripción/genética
5.
J Biol Chem ; 293(50): 19250-19262, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30337366

RESUMEN

Different transcription factors operate together at promoters and enhancers to regulate gene expression. Transcription factors either bind directly to their target DNA or are tethered to it by other proteins. The transcription factor Sp2 serves as a paradigm for indirect genomic binding. It does not require its DNA-binding domain for genomic DNA binding and occupies target promoters independently of whether they contain a cognate DNA-binding motif. Hence, Sp2 is strikingly different from its closely related paralogs Sp1 and Sp3, but how Sp2 recognizes its targets is unknown. Here, we sought to gain more detailed insights into the genomic targeting mechanism of Sp2. ChIP-exo sequencing in mouse embryonic fibroblasts revealed genomic binding of Sp2 to a composite motif where a recognition sequence for TALE homeoproteins and a recognition sequence for the trimeric histone-fold domain protein nuclear transcription factor Y (Nf-y) are separated by 11 bp. We identified a complex consisting of the TALE homeobox protein Prep1, its partner PBX homeobox 1 (Pbx1), and Nf-y as the major partners in Sp2-promoter interactions. We found that the Pbx1:Prep1 complex together with Nf-y recruits Sp2 to co-occupied regulatory elements. In turn, Sp2 potentiates binding of Pbx1:Prep1 and Nf-y. We also found that the Sp-box, a short sequence motif close to the Sp2 N terminus, is crucial for Sp2's cofactor function. Our findings reveal a mechanism by which the DNA binding-independent activity of Sp2 potentiates genomic loading of Pbx1:Prep1 and Nf-y to composite motifs present in many promoters of highly expressed genes.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Genómica , Proteínas de Homeodominio/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Factor de Transcripción Sp2/metabolismo , Animales , Factor de Unión a CCAAT/química , Línea Celular , Histonas/metabolismo , Ratones , Motivos de Nucleótidos , Unión Proteica , Transporte de Proteínas , Factor de Transcripción Sp2/química , Dedos de Zinc
6.
PLoS Genet ; 11(3): e1005102, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25793500

RESUMEN

Transcription factors are grouped into families based on sequence similarity within functional domains, particularly DNA-binding domains. The Specificity proteins Sp1, Sp2 and Sp3 are paradigmatic of closely related transcription factors. They share amino-terminal glutamine-rich regions and a conserved carboxy-terminal zinc finger domain that can bind to GC rich motifs in vitro. All three Sp proteins are ubiquitously expressed; yet they carry out unique functions in vivo raising the question of how specificity is achieved. Crucially, it is unknown whether they bind to distinct genomic sites and, if so, how binding site selection is accomplished. In this study, we have examined the genomic binding patterns of Sp1, Sp2 and Sp3 in mouse embryonic fibroblasts by ChIP-seq. Sp1 and Sp3 essentially occupy the same promoters and localize to GC boxes. The genomic binding pattern of Sp2 is different; Sp2 primarily localizes at CCAAT motifs. Consistently, re-expression of Sp2 and Sp3 mutants in corresponding knockout MEFs revealed strikingly different modes of genomic binding site selection. Most significantly, while the zinc fingers dictate genomic binding of Sp3, they are completely dispensable for binding of Sp2. Instead, the glutamine-rich amino-terminal region is sufficient for recruitment of Sp2 to its target promoters in vivo. We have identified the trimeric histone-fold CCAAT box binding transcription factor Nf-y as the major partner for Sp2-chromatin interaction. Nf-y is critical for recruitment of Sp2 to co-occupied regulatory elements. Equally, Sp2 potentiates binding of Nf-y to shared sites indicating the existence of an extensive Sp2-Nf-y interaction network. Our results unveil strikingly different recruitment mechanisms of Sp1/Sp2/Sp3 transcription factor members uncovering an unexpected layer of complexity in their binding to chromatin in vivo.


Asunto(s)
Mapas de Interacción de Proteínas/genética , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp2/genética , Factor de Transcripción Sp3/genética , Dedos de Zinc/genética , Animales , Sitios de Unión , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Genoma , Histonas/genética , Ratones , Motivos de Nucleótidos/genética , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp2/metabolismo , Factor de Transcripción Sp3/metabolismo
7.
Mol Cell ; 29(6): 742-54, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18374648

RESUMEN

SUMO modification of many transcription factors is linked to transcriptional repression. The molecular mechanisms by which SUMO attachment represses transcription are largely unknown. Here we report a genome-wide RNA interference screen in Drosophila melanogaster cells for components regulating and mediating SUMO-dependent transcriptional repression. Analysis of >21,000 double-stranded RNAs (dsRNAs) identified 120 genes whose dsRNA-mediated knockdowns impaired SUMO-dependent transcriptional repression. Several of these genes encode chromatin-associated proteins, including the ATP-dependent chromatin remodeler Mi-2, the D. melanogaster ortholog of the C. elegans protein MEP-1, and the polycomb protein Sfmbt. Knockdown of these proteins did not impair SUMO conjugation, demonstrating that they act downstream of SUMO attachment. Biochemical analyses revealed that MEP-1, Mi-2, and Sfmbt interact with each other, bind to SUMO, and are recruited to promoters in a SUMOylation-dependent manner. Our results suggest that MEP-1, Mi-2, and Sfmbt are part of a common repression complex established by DNA-bound SUMO-modified transcription factors.


Asunto(s)
Cromatina/genética , Drosophila melanogaster/genética , Interferencia de ARN , Proteína SUMO-1/metabolismo , Transcripción Genética , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Genoma , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Mamíferos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Regiones Promotoras Genéticas , ARN Bicatenario/genética , Especificidad de la Especie
8.
Nucleic Acids Res ; 42(5): 3044-58, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24369422

RESUMEN

Lethal(3) malignant brain tumour like 2 (L3MBTL2) is an integral component of the polycomb repressive complex 1.6 (PRC1.6) and has been implicated in transcriptional repression and chromatin compaction. Here, we show that L3MBTL2 is modified by SUMO2/3 at lysine residues 675 and 700 close to the C-terminus. SUMOylation of L3MBTL2 neither affected its repressive activity in reporter gene assays nor it's binding to histone tails in vitro. In order to analyse whether SUMOylation affects binding of L3MBTL2 to chromatin, we performed ChIP-Seq analysis with chromatin of wild-type HEK293 cells and with chromatin of HEK293 cells stably expressing either FLAG-tagged SUMOylation-competent or SUMOylation-defective L3MBTL2. Wild-type FLAG-L3MBTL2 and the SUMOylation-defective FLAG-L3MBTL2 K675/700R mutant essentially occupied the same sites as endogenous L3MBTL2 suggesting that SUMOylation of L3MBTL2 does not affect chromatin binding. However, a subset of L3MBTL2-target genes, particularly those with low L3MBTL2 occupancy including pro-inflammatory genes, was de-repressed in cells expressing the FLAG-L3MBTL2 K675/700R mutant. Finally, we provide evidence that SUMOylation of L3MBTL2 facilitates repression of these PRC1.6-target genes by balancing the local H2Aub1 levels established by the ubiquitinating enzyme RING2 and the de-ubiquitinating PR-DUB complex.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Transcripción Genética , Sitios de Unión , Factor de Transcripción E2F6/metabolismo , Genoma Humano , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Nucleic Acids Res ; 40(16): 7844-57, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22684502

RESUMEN

The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes.


Asunto(s)
Regulación de la Expresión Génica , Factor de Transcripción Sp2/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Proliferación Celular , ADN/química , ADN/metabolismo , Minería de Datos , Eliminación de Gen , Perfilación de la Expresión Génica , Genoma , Células HEK293 , Células HeLa , Humanos , Ratones , Posición Específica de Matrices de Puntuación , Regiones Promotoras Genéticas , Interferencia de ARN , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp2/antagonistas & inhibidores , Factor de Transcripción Sp2/genética
10.
PLoS Genet ; 6(11): e1001203, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21085687

RESUMEN

SUMO modification of transcription factors is linked to repression of transcription. The physiological significance of SUMO attachment to a particular transcriptional regulator, however, is largely unknown. We have employed the ubiquitously expressed murine transcription factor Sp3 to analyze the role of SUMOylation in vivo. We generated mice and mouse embryonic fibroblasts (MEFs) carrying a subtle point mutation in the SUMO attachment sequence of Sp3 (IKEE(553)D mutation). The E(553)D mutation impedes SUMOylation of Sp3 at K(551)in vivo, without affecting Sp3 protein levels. Expression profiling revealed that spermatocyte-specific genes, such as Dmc1 and Dnahc8, and neuronal genes, including Paqr6, Rims3, and Robo3, are de-repressed in non-testicular and extra-neuronal mouse tissues and in mouse embryonic fibroblasts expressing the SUMOylation-deficient Sp3E(553)D mutant protein. Chromatin immunoprecipitation experiments show that transcriptional de-repression of these genes is accompanied by the loss of repressive heterochromatic marks such as H3K9 and H4K20 tri-methylation and impaired recruitment of repressive chromatin-modifying enzymes. Finally, analysis of the DNA methylation state of the Dmc1, Paqr6, and Rims3 promoters by bisulfite sequencing revealed that these genes are highly methylated in Sp3wt MEFs but are unmethylated in Sp3E(553)D MEFs linking SUMOylation of Sp3 to tissue-specific CpG methylation. Our results establish SUMO conjugation to Sp3 as a molecular beacon for the assembly of repression machineries to maintain tissue-specific transcriptional gene silencing.


Asunto(s)
Silenciador del Gen , Neuronas/metabolismo , Factor de Transcripción Sp3/genética , Espermatocitos/metabolismo , Sumoilación/genética , Animales , Cromatina/metabolismo , Metilación de ADN/genética , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Marcación de Gen , Masculino , Meiosis/genética , Ratones , Ratones Mutantes , Neuronas/citología , Especificidad de Órganos/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor de Transcripción Sp3/metabolismo
11.
Biology (Basel) ; 11(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35453756

RESUMEN

The unmethylated CpG island-binding protein SAMD1 is upregulated in many human cancer types, but its cancer-related role has not yet been investigated. Here, we used the hepatocellular carcinoma cell line HepG2 as a cancer model and investigated the cellular and transcriptional roles of SAMD1 using ChIP-Seq and RNA-Seq. SAMD1 targets several thousand gene promoters, where it acts predominantly as a transcriptional repressor. HepG2 cells with SAMD1 deletion showed slightly reduced proliferation, but strongly impaired clonogenicity. This phenotype was accompanied by the decreased expression of pro-proliferative genes, including MYC target genes. Consistently, we observed a decrease in the active H3K4me2 histone mark at most promoters, irrespective of SAMD1 binding. Conversely, we noticed an increase in interferon response pathways and a gain of H3K4me2 at a subset of enhancers that were enriched for IFN-stimulated response elements (ISREs). We identified key transcription factor genes, such as IRF1, STAT2, and FOSL2, that were directly repressed by SAMD1. Moreover, SAMD1 deletion also led to the derepression of the PI3K-inhibitor PIK3IP1, contributing to diminished mTOR signaling and ribosome biogenesis pathways. Our work suggests that SAMD1 is involved in establishing a pro-proliferative setting in hepatocellular carcinoma cells. Inhibiting SAMD1's function in liver cancer cells may therefore lead to a more favorable gene signature.

12.
Comput Struct Biotechnol J ; 19: 3027-3033, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136100

RESUMEN

In recent years, the amount of available literature, data and computational tools has increased exponentially, providing opportunities and challenges to make use of this vast amount of material. Here, we describe how we utilized publicly available information to identify the previously hardly characterized protein SAMD1 (SAM domain-containing protein 1) as a novel unmethylated CpG island-binding protein. This discovery is an example, how the richness of material and tools on the internet can be used to make scientific breakthroughs, but also the hurdles that may occur. Specifically, we discuss how the misrepresentation of SAMD1 in literature and databases may have prevented an earlier characterization of this protein and we address what can be learned from this example.

13.
Sci Adv ; 7(20)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33980486

RESUMEN

CpG islands (CGIs) are key regulatory DNA elements at most promoters, but how they influence the chromatin status and transcription remains elusive. Here, we identify and characterize SAMD1 (SAM domain-containing protein 1) as an unmethylated CGI-binding protein. SAMD1 has an atypical winged-helix domain that directly recognizes unmethylated CpG-containing DNA via simultaneous interactions with both the major and the minor groove. The SAM domain interacts with L3MBTL3, but it can also homopolymerize into a closed pentameric ring. At a genome-wide level, SAMD1 localizes to H3K4me3-decorated CGIs, where it acts as a repressor. SAMD1 tethers L3MBTL3 to chromatin and interacts with the KDM1A histone demethylase complex to modulate H3K4me2 and H3K4me3 levels at CGIs, thereby providing a mechanism for SAMD1-mediated transcriptional repression. The absence of SAMD1 impairs ES cell differentiation processes, leading to misregulation of key biological pathways. Together, our work establishes SAMD1 as a newly identified chromatin regulator acting at unmethylated CGIs.


Asunto(s)
Cromatina , Motivo alfa Estéril , Cromatina/genética , Islas de CpG , ADN/metabolismo , Metilación de ADN
14.
EMBO Rep ; 9(9): 899-906, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18617891

RESUMEN

Modification of many transcription factors including Sp3 and steroidogenic factor 1 with the small ubiquitin-like modifier (SUMO) is associated with transcriptional repression. Here, we show that SUMOylation of transcription factors bound to DNA provokes the establishment of compacted repressive chromatin with characteristics of heterochromatin. Chromatin immunoprecipitation experiments revealed SUMO-dependent recruitment of the chromatin remodeller Mi-2, MBT-domain proteins, heterochromatic protein 1, and the histone methyltransferases SETDB1 and SUV4-20H, concomitant with the establishment of histone modifications associated with repressed genes, including H3K9 and H4K20 trimethylation. These results indicate that SUMOylation has a crucial role in regulating gene expression by initiating chromatin structure changes that render DNA inaccessible to the transcription machinery.


Asunto(s)
Silenciador del Gen , Heterocromatina/genética , Proteína SUMO-1/metabolismo , Factor de Transcripción Sp3/metabolismo , Transcripción Genética/genética , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , N-Metiltransferasa de Histona-Lisina , Humanos , Ratones , Modelos Biológicos , Reacción en Cadena de la Polimerasa/métodos , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo , Proteína SUMO-1/genética , Factor de Transcripción Sp3/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA