Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Cell ; 73(2): 339-353.e6, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30581147

RESUMEN

Membrane targeting of the BECN1-containing class III PI 3-kinase (PI3KC3) complexes is pivotal to the regulation of autophagy. The interaction of PI3KC3 complex II and its ubiquitously expressed inhibitor, Rubicon, was mapped to the first ß sheet of the BECN1 BARA domain and the UVRAG BARA2 domain by hydrogen-deuterium exchange and cryo-EM. These data suggest that the BARA ß sheet 1 unfolds to directly engage the membrane. This mechanism was confirmed using protein engineering, giant unilamellar vesicle assays, and molecular simulations. Using this mechanism, a BECN1 ß sheet-1 derived peptide activates both PI3KC3 complexes I and II, while HIV-1 Nef inhibits complex II. These data reveal how BECN1 switches on and off PI3KC3 binding to membranes. The observations explain how PI3KC3 inhibition by Rubicon, activation by autophagy-inducing BECN1 peptides, and inhibition by HIV-1 Nef are mediated by the switchable ability of the BECN1 BARA domain to partially unfold and insert into membranes.


Asunto(s)
Autofagia , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas Relacionadas con la Autofagia , Beclina-1/química , Beclina-1/genética , Sitios de Unión , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/genética , Microscopía por Crioelectrón , Activación Enzimática , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Simulación de Dinámica Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Relación Estructura-Actividad , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
2.
Mol Cell ; 67(3): 528-534.e3, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28757208

RESUMEN

The class III phosphatidylinositol 3-kinase complex I (PI3KC3-C1) is required for the initiation of essentially all macroautophagic processes. PI3KC3-C1 consists of the lipid kinase catalytic subunit VPS34, the VPS15 scaffold, and the regulatory BECN1 and ATG14 subunits. The VPS34 catalytic domain and BECN1:ATG14 subcomplex do not touch, and it is unclear how allosteric signals are transmitted to VPS34. We used EM and crosslinking mass spectrometry to dissect five conformational substates of the complex, including one in which the VPS34 catalytic domain is dislodged from the complex but remains tethered by an intrinsically disordered linker. A "leashed" construct prevented dislodging without interfering with the other conformations, blocked enzyme activity in vitro, and blocked autophagy induction in yeast cells. This pinpoints the dislodging and tethering of the VPS34 catalytic domain, and its regulation by VPS15, as a master allosteric switch in autophagy induction.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Regulación Alostérica , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/genética , Células HEK293 , Humanos , Espectrometría de Masas/métodos , Mutación , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Relación Estructura-Actividad , Proteína de Clasificación Vacuolar VPS15/química , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo
3.
Mol Cell ; 68(5): 835-846.e3, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29107538

RESUMEN

The lysosomal membrane is the locus for sensing cellular nutrient levels, which are transduced to mTORC1 via the Rag GTPases and the Ragulator complex. The crystal structure of the five-subunit human Ragulator at 1.4 Å resolution was determined. Lamtor1 wraps around the other four subunits to stabilize the assembly. The Lamtor2:Lamtor3 dimer stacks upon Lamtor4:Lamtor5 to create a platform for Rag binding. Hydrogen-deuterium exchange was used to map the Rag binding site to the outer face of the Lamtor2:Lamtor3 dimer and to the N-terminal intrinsically disordered region of Lamtor1. EM was used to reconstruct the assembly of the full-length RagAGTP:RagCGDP dimer bound to Ragulator at 16 Å resolution, revealing that the G-domains of the Rags project away from the Ragulator core. The combined structural model shows how Ragulator functions as a platform for the presentation of active Rags for mTORC1 recruitment, and might suggest an unconventional mechanism for Rag GEF activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Proteínas de Unión al GTP Monoméricas/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Microscopía Electrónica , Simulación del Acoplamiento Molecular , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
4.
Proc Natl Acad Sci U S A ; 111(35): 12793-8, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25139988

RESUMEN

The autophagy-related 1 (Atg1) complex of Saccharomyces cerevisiae has a central role in the initiation of autophagy following starvation and TORC1 inactivation. The complex consists of the protein kinase Atg1, the TORC1 substrate Atg13, and the trimeric Atg17-Atg31-Atg29 scaffolding subcomplex. Autophagy is triggered when Atg1 and Atg13 assemble with the trimeric scaffold. Here we show by hydrogen-deuterium exchange coupled to mass spectrometry that the mutually interacting Atg1 early autophagy targeting/tethering domain and the Atg13 central domain are highly dynamic in isolation but together form a stable complex with ∼ 100-nM affinity. The Atg1-Atg13 complex in turn binds as a unit to the Atg17-Atg31-Atg29 scaffold with ∼ 10-µM affinity via Atg13. The resulting complex consists primarily of a dimer of pentamers in solution. These results lead to a model for autophagy initiation in which Atg1 and Atg13 are tightly associated with one another and assemble transiently into the pentameric Atg1 complex during starvation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Proteínas Relacionadas con la Autofagia , Calorimetría , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Eliminación de Gen , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Unión Proteica , Proteínas Quinasas/química , Proteínas Quinasas/genética , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
Nat Commun ; 14(1): 7631, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993427

RESUMEN

AMBRA1 is a tumor suppressor protein that functions as a substrate receptor of the ubiquitin conjugation system with roles in autophagy and the cell cycle regulatory network. The intrinsic disorder of AMBRA1 has thus far precluded its structural determination. To solve this problem, we analyzed the dynamics of AMBRA1 using hydrogen deuterium exchange mass spectrometry (HDX-MS). The HDX results indicated that AMBRA1 is a highly flexible protein and can be stabilized upon interaction with DDB1, the adaptor of the Cullin4A/B E3 ligase. Here, we present the cryo-EM structure of AMBRA1 in complex with DDB1 at 3.08 Å resolution. The structure shows that parts of the N- and C-terminal structural regions in AMBRA1 fold together into the highly dynamic WD40 domain and reveals how DDB1 engages with AMBRA1 to create a binding scaffold for substrate recruitment. The N-terminal helix-loop-helix motif and WD40 domain of AMBRA1 associate with the double-propeller fold of DDB1. We also demonstrate that DDB1 binding-defective AMBRA1 mutants prevent ubiquitination of the substrate Cyclin D1 in vitro and increase cell cycle progression. Together, these results provide structural insights into the AMBRA1-ubiquitin ligase complex and suggest a mechanism by which AMBRA1 acts as a hub involved in various physiological processes.


Asunto(s)
Proteínas Portadoras , Proteínas de Unión al ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Portadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Puntos de Control del Ciclo Celular , Ubiquitina/metabolismo
6.
Structure ; 31(11): 1431-1440.e5, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37788672

RESUMEN

CULLIN-RING ligases constitute the largest group of E3 ubiquitin ligases. While some CULLIN family members recruit adapters before engaging further with different substrate receptors, homo-dimeric BTB-Kelch family proteins combine adapter and substrate receptor into a single polypeptide for the CULLIN3 family. However, the entire structural assembly and molecular details have not been elucidated to date. Here, we present a cryo-EM structure of the CULLIN3RBX1 in complex with Kelch-like protein 22 (KLHL22) and a mitochondrial glutamate dehydrogenase complex I (GDH1) at 3.06 Å resolution. The structure adopts a W-shaped architecture formed by E3 ligase dimers. Three CULLIN3KLHL22-RBX1 dimers were found to be dynamically associated with a single GDH1 hexamer. CULLIN3KLHL22-RBX1 ligase mediated the polyubiquitination of GDH1 in vitro. Together, these results enabled the establishment of a structural model for understanding the complete assembly of BTB-Kelch proteins with CULLIN3 and how together they recognize oligomeric substrates and target them for ubiquitination.


Asunto(s)
Proteínas Cullin , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Cullin/metabolismo , Unión Proteica , Microscopía por Crioelectrón , Estructura Terciaria de Proteína , Proteínas Portadoras/metabolismo , Ubiquitinación
7.
J Biol Chem ; 286(26): 23489-97, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21543314

RESUMEN

Co-translational protein targeting to the membrane is mediated by the signal recognition particle and its receptor (FtsY). Their homologous GTPase domains interact at the membrane and form a heterodimer in which both GTPases are activated. The prerequisite for protein targeting is the interaction of FtsY with phospholipids. However, the mechanism of FtsY regulation by phospholipids remained unclear. Here we show that the N terminus of FtsY (A domain) is natively unfolded in solution and define the complete membrane-targeting sequence. We show that the membrane-targeting sequence is highly dynamic in solution, independent of nucleotides and directly responds to the density of anionic phospholipids by a random coil-helix transition. This conformational switch is essential for tethering FtsY to membranes and activates the GTPase for its subsequent interaction with the signal recognition particle. Our results underline the dynamics of lipid-protein interactions and their importance in the regulation of protein targeting and translocation across biological membranes.


Asunto(s)
Proteínas Bacterianas/química , Membrana Celular/química , Escherichia coli/enzimología , GTP Fosfohidrolasas/química , Fosfolípidos/química , Pliegue de Proteína , Receptores Citoplasmáticos y Nucleares/química , Partícula de Reconocimiento de Señal/química , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , GTP Fosfohidrolasas/metabolismo , Fosfolípidos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Partícula de Reconocimiento de Señal/metabolismo
8.
Proc Natl Acad Sci U S A ; 106(50): 21131-6, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19948960

RESUMEN

Tail-anchored (TA) membrane proteins are involved in a variety of important cellular functions, including membrane fusion, protein translocation, and apoptosis. The ATPase Get3 (Asna1, TRC40) was identified recently as the endoplasmic reticulum targeting factor of TA proteins. Get3 consists of an ATPase and alpha-helical subdomain enriched in methionine and glycine residues. We present structural and biochemical analyses of Get3 alone as well as in complex with a TA protein, ribosome-associated membrane protein 4 (Ramp4). The ATPase domains form an extensive dimer interface that encloses 2 nucleotides in a head-to-head orientation and a zinc ion. Amide proton exchange mass spectrometry shows that the alpha-helical subdomain of Get3 displays considerable flexibility in solution and maps the TA protein-binding site to the alpha-helical subdomain. The non-hydrolyzable ATP analogue AMPPNP-Mg(2+)- and ADP-Mg(2+)-bound crystal structures representing the pre- and posthydrolysis states are both in a closed form. In the absence of a TA protein cargo, ATP hydrolysis does not seem to be possible. Comparison with the ADP.AlF(4)(-)-bound structure representing the transition state (Mateja A, et al. (2009) Nature 461:361-366) indicates how the presence of a TA protein is communicated to the ATP-binding site. In vitro membrane insertion studies show that recombinant Get3 inserts Ramp4 in a nucleotide- and receptor-dependent manner. Although ATP hydrolysis is not required for Ramp4 insertion per se, it seems to be required for efficient insertion. We postulate that ATP hydrolysis is needed to release Get3 from its receptor. Taken together, our results provide mechanistic insights into posttranslational targeting of TA membrane proteins by Get3.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Membrana Celular/metabolismo , Proteínas de la Membrana/química , Adenosina Trifosfato/metabolismo , Clostridium thermocellum/química , Unión Proteica , Transporte de Proteínas
9.
Nat Commun ; 13(1): 7898, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550129

RESUMEN

Sterile alpha (SAM) and Toll/interleukin-1 receptor (TIR) motif containing 1 (SARM1) is an autoinhibitory NAD-consuming enzyme that is activated by the accumulation of nicotinamide mononucleotide (NMN) during axonal injury. Its activation mechanism is not fully understood. Here, we generate a nanobody, Nb-C6, that specifically recognizes NMN-activated SARM1. Nb-C6 stains only the activated SARM1 in cells stimulated with CZ-48, a permeant mimetic of NMN, and partially activates SARM1 in vitro and in cells. Cryo-EM of NMN/SARM1/Nb-C6 complex shows an octameric structure with ARM domains bending significantly inward and swinging out together with TIR domains. Nb-C6 binds to SAM domain of the activated SARM1 and stabilized its ARM domain. Mass spectrometry analyses indicate that the activated SARM1 in solution is highly dynamic and that the neighboring TIRs form transient dimers via the surface close to one BB loop. We show that Nb-C6 is a valuable tool for studies of SARM1 activation.


Asunto(s)
Axones , Mononucleótido de Nicotinamida , Mononucleótido de Nicotinamida/metabolismo , Axones/metabolismo , Dominios Proteicos , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo
10.
J Biol Chem ; 285(52): 40508-14, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20956528

RESUMEN

The mechanism underlying the interaction of the Escherichia coli signal recognition particle receptor FtsY with the cytoplasmic membrane has been studied in detail. Recently, we proposed that FtsY requires functional interaction with inner membrane lipids at a late stage of the signal recognition particle pathway. In addition, an essential lipid-binding α-helix was identified in FtsY of various origins. Theoretical considerations and in vitro studies have suggested that it interacts with acidic lipids, but this notion is not yet fully supported by in vivo experimental evidence. Here, we present an unbiased genetic clue, obtained by serendipity, supporting the involvement of acidic lipids. Utilizing a dominant negative mutant of FtsY (termed NG), which is defective in its functional interaction with lipids, we screened for E. coli genes that suppress the negative dominant phenotype. In addition to several unrelated phenotype-suppressor genes, we identified pgsA, which encodes the enzyme phosphatidylglycerophosphate synthase (PgsA). PgsA is an integral membrane protein that catalyzes the committed step to acidic phospholipid synthesis, and we show that its overexpression increases the contents of cardiolipin and phosphatidylglycerol. Remarkably, expression of PgsA also stabilizes NG and restores its biological function. Collectively, our results strongly support the notion that FtsY functionally interacts with acidic lipids.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cardiolipinas/biosíntesis , Escherichia coli K12/metabolismo , Fosfatidilgliceroles/biosíntesis , Receptores Citoplasmáticos y Nucleares/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/biosíntesis , Proteínas Bacterianas/genética , Cardiolipinas/genética , Escherichia coli K12/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Mutación , Fosfatidilgliceroles/genética , Estructura Secundaria de Proteína , Receptores Citoplasmáticos y Nucleares/genética , Partícula de Reconocimiento de Señal/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
11.
Mol Biol Cell ; 30(9): 1098-1107, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30811270

RESUMEN

Autophagy is a conserved eukaryotic pathway critical for cellular adaptation to changes in nutrition levels and stress. The class III phosphatidylinositol (PI)3-kinase complexes I and II (PI3KC3-C1 and -C2) are essential for autophagosome initiation and maturation, respectively, from highly curved vesicles. We used a cell-free reaction that reproduces a key autophagy initiation step, LC3 lipidation, as a biochemical readout to probe the role of autophagy-related gene (ATG)14, a PI3KC3-C1-specific subunit implicated in targeting the complex to autophagy initiation sites. We reconstituted LC3 lipidation with recombinant PI3KC3-C1, -C2, or various mutant derivatives added to extracts derived from a CRISPR/Cas9-generated ATG14-knockout cell line. Both complexes C1 and C2 require the C-terminal helix of VPS34 for activity on highly curved membranes. However, only complex C1 supports LC3 lipidation through the curvature-targeting amphipathic lipid packing sensor (ALPS) motif of ATG14. Furthermore, the ALPS motif and VPS34 catalytic activity are required for downstream recruitment of WD-repeat domain phosphoinositide-interacting protein (WIPI)2, a protein that binds phosphatidylinositol 3-phosphate and its product phosphatidylinositol 3, 5-bisphosphate, and a WIPI-binding protein, ATG2A, but do not affect membrane association of ATG3 and ATG16L1, enzymes contributing directly to LC3 lipidation. These data reveal the nuanced role of the ATG14 ALPS in membrane curvature sensing, suggesting that the ALPS has additional roles in supporting LC3 lipidation.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras , Células HEK293 , Humanos , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
12.
Biochim Biophys Acta ; 1768(11): 2923-30, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17920034

RESUMEN

Conformational changes of human plasma apolipoprotein B100 (apoB) during oxidative modification of low-density lipoproteins (LDL) have been investigated. Emphasis has been put on the early stages of LDL oxidation and the modification of apoB. We have applied two different modes of LDL oxidation initiation in order to approach the problem from different perspectives. To study conformational changes of the protein and the phospholipids surface monolayer, we have applied attenuated total reflection infrared as well as fluorescence spectroscopy. We have found for the first time that conformational changes of apoB occur even in the earliest stages of oxidation process and that those are located predominantly in the beta-sheet regions. The dynamics of changes has also been described and related to different stages of oxidation. After initial increase in particle surface accessibility and mobility, by entering into the propagation phase of oxidation process, LDL surface accessibility and mobility are decreased. Finally, in the decomposition phase of LDL oxidation, as the particle faces large chemical and physical changes, surface mobility and accessibility is increased again. These observations provide new insights into the modifications of LDL particles upon oxidation.


Asunto(s)
Apolipoproteína B-100/química , Lipoproteínas LDL/metabolismo , Apolipoproteína B-100/metabolismo , Cobre/química , Oxidación-Reducción , Conformación Proteica , Espectrometría de Fluorescencia
13.
Structure ; 26(11): 1440-1450.e5, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30146170

RESUMEN

The Escherichia coli signal recognition particle (SRP) receptor, FtsY, plays a fundamental role in co-translational targeting of membrane proteins via the SRP pathway. Efficient targeting relies on membrane interaction of FtsY and heterodimerization with the SRP protein Ffh, which is driven by detachment of α helix (αN1) in FtsY. Here we show that apart from the heterodimer, FtsY forms a nucleotide-dependent homodimer on the membrane, and upon αN1 removal also in solution. Homodimerization triggers reciprocal stimulation of GTP hydrolysis and occurs in vivo. Biochemical characterization together with integrative modeling suggests that the homodimer employs the same interface as the heterodimer. Structure determination of FtsY NG+1 with GMPPNP shows that a dimerization-induced conformational switch of the γ-phosphate is conserved in Escherichia coli, filling an important gap in SRP GTPase activation. Our findings add to the current understanding of SRP GTPases and may challenge previous studies that did not consider homodimerization of FtsY.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Sitios de Unión , Membrana Celular/química , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/química , Hidrólisis , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Partícula de Reconocimiento de Señal/metabolismo
14.
Science ; 359(6378): 940-944, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29348366

RESUMEN

Transcriptionally repressive histone H3 lysine 27 methylation by Polycomb repressive complex 2 (PRC2) is essential for cellular differentiation and development. Here we report cryo-electron microscopy structures of human PRC2 in a basal state and two distinct active states while in complex with its cofactors JARID2 and AEBP2. Both cofactors mimic the binding of histone H3 tails. JARID2, methylated by PRC2, mimics a methylated H3 tail to stimulate PRC2 activity, whereas AEBP2 interacts with the RBAP48 subunit, mimicking an unmodified H3 tail. SUZ12 interacts with all other subunits within the assembly and thus contributes to the stability of the complex. Our analysis defines the complete architecture of a functionally relevant PRC2 and provides a structural framework to understand its regulation by cofactors, histone tails, and RNA.


Asunto(s)
Complejo Represivo Polycomb 2/química , Proteínas Represoras/química , Microscopía por Crioelectrón , Histonas/química , Humanos , Metilación , Complejo Represivo Polycomb 2/ultraestructura , Unión Proteica , Conformación Proteica , Proteínas Represoras/ultraestructura
15.
Nat Commun ; 9(1): 135, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321502

RESUMEN

Pex1 and Pex6 form a heterohexameric motor essential for peroxisome biogenesis and function, and mutations in these AAA-ATPases cause most peroxisome-biogenesis disorders in humans. The tail-anchored protein Pex15 recruits Pex1/Pex6 to the peroxisomal membrane, where it performs an unknown function required for matrix-protein import. Here we determine that Pex1/Pex6 from S. cerevisiae is a protein translocase that unfolds Pex15 in a pore-loop-dependent and ATP-hydrolysis-dependent manner. Our structural studies of Pex15 in isolation and in complex with Pex1/Pex6 illustrate that Pex15 binds the N-terminal domains of Pex6, before its C-terminal disordered region engages with the pore loops of the motor, which then processively threads Pex15 through the central pore. Furthermore, Pex15 directly binds the cargo receptor Pex5, linking Pex1/Pex6 to other components of the peroxisomal import machinery. Our results thus support a role of Pex1/Pex6 in mechanical unfolding of peroxins or their extraction from the peroxisomal membrane during matrix-protein import.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de la Membrana/metabolismo , Peroxisomas/enzimología , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Conformación Proteica , Saccharomyces cerevisiae
16.
Mol Cell Oncol ; 4(6): e1367873, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209653

RESUMEN

The class III PI 3-kinase, VPS34 forms distinct complexes essential for cargo sorting and membrane trafficking in endocytosis as well as for autophagosome nucleation and maturation. We used integrative structural biology approach to provide insights into the conformational dynamics of the complex and mechanisms that regulate VPS34 activity at the membrane.

18.
Nat Commun ; 8: 14076, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134250

RESUMEN

The intrinsically disordered scaffold proteins AFF1/4 and the transcription elongation factors ELL1/2 are core components of the super elongation complex required for HIV-1 proviral transcription. Here we report the 2.0-Å resolution crystal structure of the human ELL2 C-terminal domain bound to its 50-residue binding site on AFF4, the ELLBow. The ELL2 domain has the same arch-shaped fold as the tight junction protein occludin. The ELLBow consists of an N-terminal helix followed by an extended hairpin that we refer to as the elbow joint, and occupies most of the concave surface of ELL2. This surface is important for the ability of ELL2 to promote HIV-1 Tat-mediated proviral transcription. The AFF4-ELL2 interface is imperfectly packed, leaving a cavity suggestive of a potential binding site for transcription-promoting small molecules.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/genética , VIH-1/fisiología , Provirus/fisiología , Proteínas Represoras/química , Elongación de la Transcripción Genética/fisiología , Factores de Elongación Transcripcional/química , Síndrome de Inmunodeficiencia Adquirida/virología , Sitios de Unión/genética , Sistemas CRISPR-Cas , Cristalografía por Rayos X , Regulación Viral de la Expresión Génica , Técnicas de Inactivación de Genes , VIH-1/patogenicidad , Células HeLa , Humanos , Células Jurkat , Mutagénesis , Unión Proteica/genética , Dominios Proteicos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Activación Viral/genética , Latencia del Virus/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
19.
Elife ; 52016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27731797

RESUMEN

HIV-1 Tat hijacks the human superelongation complex (SEC) to promote proviral transcription. Here we report the 5.9 Å structure of HIV-1 TAR in complex with HIV-1 Tat and human AFF4, CDK9, and CycT1. The TAR central loop contacts the CycT1 Tat-TAR recognition motif (TRM) and the second Tat Zn2+-binding loop. Hydrogen-deuterium exchange (HDX) shows that AFF4 helix 2 is stabilized in the TAR complex despite not touching the RNA, explaining how it enhances TAR binding to the SEC 50-fold. RNA SHAPE and SAXS data were used to help model the extended (Tat Arginine-Rich Motif) ARM, which enters the TAR major groove between the bulge and the central loop. The structure and functional assays collectively support an integrative structure and a bipartite binding model, wherein the TAR central loop engages the CycT1 TRM and compact core of Tat, while the TAR major groove interacts with the extended Tat ARM.


Asunto(s)
Ciclina T/química , Quinasa 9 Dependiente de la Ciclina/química , ADN Viral/química , Duplicado del Terminal Largo de VIH , Proteínas Represoras/química , Factores de Elongación Transcripcional/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , ADN Viral/metabolismo , Medición de Intercambio de Deuterio , VIH-1/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Provirus/genética , Proteínas Represoras/metabolismo , Dispersión del Ángulo Pequeño , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
20.
Autophagy ; 11(1): 185-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25700739

RESUMEN

The Atg1 complex, comprising Atg1, Atg13, Atg17, Atg29, and Atg31, is a key initiator of autophagy. The Atg17-Atg31-Atg29 subcomplex is constitutively present at the phagophore assembly site (PAS), while Atg1 and Atg13 join the complex when autophagy is triggered by starvation or other signals. We sought to understand the energetics and dynamics of assembly using isothermal titration calorimetry (ITC), sedimentation velocity analytical ultracentrifugation, and hydrogen-deuterium exchange (HDX). We showed that the membrane and Atg13-binding domain of Atg1, Atg1EAT, is dynamic on its own, but is rigidified in its high-affinity (∼100 nM) complex with Atg13. Atg1EAT and Atg13 form a 2:2 dimeric assembly and together associate with lower affinity (∼10 µM) with the 2:2:2 Atg17-Atg31-Atg29 complex. These results lead to an overall model for the assembly pathway of the Atg1 complex. The model highlights the Atg13-Atg17 binding event as the weakest link in the assembly process and thus as a natural regulatory checkpoint.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/química , Modelos Biológicos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA