Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Genomics ; 14: 255, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23586901

RESUMEN

BACKGROUND: Staphylococcus epidermidis bacteria are a major cause of biomaterial-associated infections in modern medicine. Yet there is little known about the host responses against this normally innocent bacterium in the context of infection of biomaterials. In order to better understand the factors involved in this process, a whole animal model with high throughput screening possibilities and markers for studying the host response to S. epidermidis infection are required. RESULTS: We have used a zebrafish yolk injection system to study bacterial proliferation and the host response in a time course experiment of S. epidermidis infection. By combining an automated microinjection system with complex object parametric analysis and sorting (COPAS) technology we have quantified bacterial proliferation. This system was used together with transcriptome analysis at several time points during the infection period. We show that bacterial colony forming unit (CFU) counting can be replaced by high throughput flow-based fluorescence analysis of embryos enabling high throughput readout. Comparison of the host transcriptome response to S. epidermidis and Mycobacterium marinum infection in the same system showed that M. marinum has a far stronger effect on host gene regulation than S. epidermidis. However, multiple genes responded differently to S. epidermidis infection than to M. marinum, including a cell adhesion gene linked to specific infection by staphylococci in mammals. CONCLUSIONS: Our zebrafish embryo infection model allowed (i) quantitative assessment of bacterial proliferation, (ii) identification of zebrafish genes serving as markers for infection with the opportunistic pathogen S. epidermidis, and (iii) comparison of the transcriptome response of infection with S. epidermidis and with the pathogen M. marinum. As a result we have identified markers that can be used to distinguish common and specific responses to S. epidermidis. These markers enable the future integration of our high throughput screening technology with functional analyses of immune response genes and immune modulating factors.


Asunto(s)
Infecciones Estafilocócicas/genética , Staphylococcus epidermidis/fisiología , Pez Cebra/genética , Pez Cebra/microbiología , Animales , Biomarcadores/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Especificidad de la Especie , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Staphylococcus epidermidis/crecimiento & desarrollo , Staphylococcus epidermidis/inmunología , Staphylococcus epidermidis/patogenicidad , Transcriptoma , Pez Cebra/embriología , Pez Cebra/inmunología
2.
Blood ; 116(3): e1-11, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20424185

RESUMEN

The Spi1/Pu.1 transcription factor plays a crucial role in myeloid cell development in vertebrates. Despite extensive studies of Spi1, the controlled gene group remains largely unknown. To identify genes dependent on Spi1, we used a microarray strategy using a knockdown approach in zebrafish embryos combined with fluorescence-activated cell sorting of myeloid cells from transgenic embryos. This approach of using knockdowns with specific green fluorescent protein-marked cell types was highly successful in identifying macrophagespecific genes in Spi1-directed innate immunity. We found a gene group downregulated on spi1 knockdown, which is also enriched in fluorescence-activated cell-sorted embryonic myeloid cells of a spi1:GFP transgenic line. This gene group, representing putative myeloidspecific Spi1 target genes, contained all 5 previously identified Spi1-dependent zebrafish genes as well as a large set of novel immune-related genes. Colocalization studies with neutrophil and macrophage markers revealed that genes cxcr3.2, mpeg1, ptpn6, and mfap4 were expressed specifically in early embryonic macrophages. In a functional approach, we demonstrated that gene cxcr3.2, coding for chemokine receptor 3.2, is involved in macrophage migration to the site of bacterial infection. Therefore, based on our combined transcriptome analyses, we discovered novel early macrophage-specific marker genes, including a signal transducer pivotal for macrophage migration in the innate immune response.


Asunto(s)
Inmunidad Innata/genética , Macrófagos/inmunología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/inmunología , Transactivadores/genética , Transactivadores/inmunología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Hematopoyesis/genética , Hematopoyesis/inmunología , Hibridación in Situ , Macrófagos/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CXCR3/genética , Proteínas Recombinantes/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones por Salmonella/genética , Infecciones por Salmonella/inmunología , Salmonella typhimurium , Transactivadores/antagonistas & inhibidores , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/inmunología
3.
BMC Immunol ; 12: 58, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22003892

RESUMEN

BACKGROUND: The zebrafish embryo is an important in vivo model to study the host innate immune response towards microbial infection. In most zebrafish infectious disease models, infection is achieved by micro-injection of bacteria into the embryo. Alternatively, Edwardsiella tarda, a natural fish pathogen, has been used to treat embryos by static immersion. In this study we used transcriptome profiling and quantitative RT-PCR to analyze the immune response induced by E. tarda immersion and injection. RESULTS: Mortality rates after static immersion of embryos in E. tarda suspension varied between 25-75%, while intravenous injection of bacteria resulted in 100% mortality. Quantitative RT-PCR analysis on the level of single embryos showed that expression of the proinflammatory marker genes il1b and mmp9 was induced only in some embryos that were exposed to E. tarda in the immersion system, whereas intravenous injection of E. tarda led to il1b and mmp9 induction in all embryos. In addition, microarray expression profiles of embryos subjected to immersion or injection showed little overlap. E. tarda-injected embryos displayed strong induction of inflammatory and defense genes and of regulatory genes of the immune response. E. tarda-immersed embryos showed transient induction of the cytochrome P450 gene cyp1a. This gene was also induced after immersion in Escherichia coli and Pseudomonas aeruginosa suspensions, but, in contrast, was not induced upon intravenous E. tarda injection. One of the rare common responses in the immersion and injection systems was induction of irg1l, a homolog of a murine immunoresponsive gene of unknown function. CONCLUSIONS: Based on the differences in mortality rates between experiments and gene expression profiles of individual embryos we conclude that zebrafish embryos cannot be reproducibly infected by exposure to E. tarda in the immersion system. Induction of il1b and mmp9 was consistently observed in embryos that had been systemically infected by intravenous injection, while the early transcriptional induction of cyp1a and irg1l in the immersion system may reflect an epithelial or other tissue response towards cell membrane or other molecules that are shed or released by bacteria. Our microarray expression data provide a useful reference for future analysis of signal transduction pathways underlying the systemic innate immune response versus those underlying responses to external bacteria and secreted virulence factors and toxins.


Asunto(s)
Edwardsiella tarda/inmunología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Animales , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Edwardsiella tarda/patogenicidad , Embrión no Mamífero , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/metabolismo , Escherichia coli/patogenicidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Hidroliasas/genética , Hidroliasas/metabolismo , Inmersión , Inyecciones Intravenosas/métodos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Análisis por Micromatrices , Pseudomonas aeruginosa/patogenicidad , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Fish Shellfish Immunol ; 31(5): 716-24, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20816807

RESUMEN

Salmonella enterica serovar Typhimurium (S. typhimurium) bacteria cause an inflammatory and lethal infection in zebrafish embryos. To characterize the embryonic innate host response at the transcriptome level, we have extended and validated previous microarray data by Illumina next-generation sequencing analysis. We obtained 10 million sequence reads from control and Salmonella-infected zebrafish embryos using a tag-based sequencing method (DGE or Tag-Seq) and 15 million reads using whole transcript sequencing (RNA-Seq), which respectively mapped to circa 65% and 85% of 28,716 known Ensembl transcripts. Both sequencing methods showed a strong correlation of sequence read counts per transcript and an overlap of 241 transcripts differentially expressed in response to infection. A lower overlap of 165 transcripts was observed with previous microarray data. Based on the combined sequencing-based and microarray-based transcriptome data we compiled an annotated reference set of infection-responsive genes in zebrafish embryos, encoding transcription factors, signal transduction proteins, cytokines and chemokines, complement factors, proteins involved in apoptosis and proteolysis, proteins with anti-microbial activities, as well as many known or novel proteins not previously linked to the immune response. Furthermore, by comparison of the deep sequencing data of S. typhimurium infection in zebrafish embryos with previous deep sequencing data of Mycobacterium marinum infection in adult zebrafish we derived a common set of infection-responsive genes. This gene set consists of known and putative innate host defense genes that are expressed both in the absence and presence of a fully developed adaptive immune system and that provide a valuable reference for future studies of host-pathogen interactions using zebrafish infection models.


Asunto(s)
Enfermedades de los Peces/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunidad Innata/genética , Salmonelosis Animal/inmunología , Transcriptoma , Pez Cebra/genética , Pez Cebra/inmunología , Animales , Embrión no Mamífero/inmunología , Interacciones Huésped-Patógeno/genética , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
5.
J Immunol ; 182(9): 5641-53, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19380811

RESUMEN

Due to the clear separation of innate immunity from adaptive responses, the externally developing zebrafish embryo represents a useful in vivo model for identification of innate host determinants of the response to bacterial infection. Here we performed a time-course transcriptome profiling study and gene ontology analysis of the embryonic innate immune response to infection with two model Salmonella strains that elicit either a lethal infection or an attenuated response. The transcriptional response to infection with both the lethal strain and the avirulent LPS O-Ag mutant strain showed clear conservation with host responses detected in other vertebrate models and human cells, including induction of genes encoding cell surface receptors, signaling intermediates, transcription factors, and inflammatory mediators. Furthermore, our study led to the identification of a large set of novel immune response genes and infection markers, the future functional characterization of which will support vertebrate genome annotation. From the time series and bacterial strain comparisons, matrix metalloproteinase genes, including mmp9, were among the most consistent infection-responsive genes. Purified Salmonella flagellin also strongly induced mmp9 expression. Using knockdown analysis, we showed that this gene was downstream of the zebrafish homologs of the flagellin receptor TLR5 and the adaptor MyD88. Additionally, flagellin-mediated induction of other inflammation markers, including il1b, il8, and cxcl-C1c, was reduced upon Tlr5 knockdown as well as expression of irak3, a putative negative TLR pathway regulator. Finally, we showed that induction of il1b, mmp9, and irak3 requires Myd88-dependent signaling, while ifn1 and il8 were induced Myd88 independently during Salmonella infection.


Asunto(s)
Perfilación de la Expresión Génica , Inmunidad Innata/genética , Salmonelosis Animal/genética , Salmonelosis Animal/inmunología , Pez Cebra/embriología , Pez Cebra/genética , Animales , Humanos , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salmonelosis Animal/metabolismo , Salmonella typhimurium/inmunología , Pez Cebra/fisiología
6.
J Vis Exp ; (143)2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30663673

RESUMEN

Biomaterial-associated infection (BAI) is a major cause of the failure of biomaterials/medical devices. Staphylococcus aureus is one of the major pathogens in BAI. Current experimental BAI mammalian animal models such as mouse models are costly and time-consuming, and therefore not suitable for high throughput analysis. Thus, novel animal models as complementary systems for investigating BAI in vivo are desired. In the present study, we aimed to develop a zebrafish embryo model for in vivo visualization and intravital analysis of bacterial infection in the presence of biomaterials based on fluorescence microscopy. In addition, the provoked macrophage response was studied. To this end, we used fluorescent protein-expressing S. aureus and transgenic zebrafish embryos expressing fluorescent proteins in their macrophages and developed a procedure to inject bacteria alone or together with microspheres into the muscle tissue of embryos. To monitor bacterial infection progression in live embryos over time, we devised a simple but reliable method of microscopic scoring of fluorescent bacteria. The results from microscopic scoring showed that all embryos with more than 20 colony-forming units (CFU) of bacteria yielded a positive fluorescent signal of bacteria. To study the potential effects of biomaterials on infection, we determined the CFU numbers of S. aureus with and without 10 µm polystyrene microspheres (PS10) as model biomaterials in the embryos. Moreover, we used the ObjectJ project file "Zebrafish-Immunotest" operating in ImageJ to quantify the fluorescence intensity of S. aureus infection with and without PS10 over time. Results from both methods showed higher numbers of S. aureus in infected embryos with microspheres than in embryos without microspheres, indicating an increased infection susceptibility in the presence of the biomaterial. Thus, the present study shows the potential of the zebrafish embryo model to study BAI with the methods developed here.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Materiales Biocompatibles , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Fluorescencia , Macrófagos , Microesferas , Poliestirenos , Pez Cebra/microbiología
7.
J Biomed Mater Res A ; 105(9): 2522-2532, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28509403

RESUMEN

To rapidly assess early inflammatory cell responses provoked by biomaterials in the full complexity of the living organism, we developed a zebrafish embryo model which allows real time analysis of these responses to biomaterial microspheres. Fluorescently labeled microspheres with different properties were injected into embryos of selected transgenic zebrafish lines expressing distinct fluorescent proteins in their neutrophils and macrophages. Recruitment of leukocytes and their interactions with microspheres were monitored using fluorescence microscopy. We developed a novel method using ImageJ and the plugin ObjectJ project file "Zebrafish-Immunotest" for rapid and semi-automated fluorescence quantification of the cellular responses. In the embryo model we observed an ordered inflammatory cell response to polystyrene and poly (ε-caprolactone) microspheres, similar to that described for mammalian animal models. The responses were characterized by an early infiltration of neutrophils followed by macrophages, and subsequent differentially timed migration of these cells away from the microspheres. The size of microspheres (10 and 15 µm) did not influence the cellular responses. Poly (ε-caprolactone) microspheres provoked a stronger infiltration of neutrophils and macrophages than polystyrene microspheres did. Our study shows the potential usefulness of zebrafish embryos for in vivo evaluation of biomaterial-associated inflammatory cell responses. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2522-2532, 2017.


Asunto(s)
Materiales Biocompatibles/efectos adversos , Embrión no Mamífero/patología , Inflamación/patología , Pez Cebra/embriología , Animales , Comunicación Celular , Movimiento Celular , Modelos Animales de Enfermedad , Fluorescencia , Macrófagos/patología , Microesferas , Infiltración Neutrófila , Poliésteres/efectos adversos , Poliestirenos/efectos adversos
8.
Methods Cell Biol ; 105: 273-308, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21951535

RESUMEN

The major cell types of the innate immune system, macrophages and neutrophils, develop during the first two days of zebrafish embryogenesis. The interaction of these immune cells with pathogenic microbes can excellently be traced in the optically transparent zebrafish embryos. Various tools and methods have recently been developed for visualizing and isolating the zebrafish embryonic innate immune cells, for establishing infections by different micro-injection techniques, and for analyzing the host innate immune response following microbial recognition. Here we provide practical guidelines for the application of these methodologies and review the current state of the art in zebrafish infectious disease research.


Asunto(s)
Biología Evolutiva/métodos , Técnicas de Silenciamiento del Gen/métodos , Genómica/métodos , Inmunidad Innata , Hibridación Fluorescente in Situ/métodos , Microinyecciones/métodos , Imagen Molecular/métodos , Pez Cebra/inmunología , Animales , Biomarcadores/análisis , Linaje de la Célula , Embrión no Mamífero , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Humanos , Macrófagos/inmunología , Neutrófilos/inmunología , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Salmonella typhimurium/inmunología , Transgenes , Pez Cebra/embriología , Pez Cebra/genética
9.
PLoS One ; 6(2): e16779, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21390204

RESUMEN

One-third of the world population is infected with Mycobacterium tuberculosis and multi-drug resistant strains are rapidly evolving. The noticeable absence of a whole organism high-throughput screening system for studying the progression of tuberculosis is fast becoming the bottleneck in tuberculosis research. We successfully developed such a system using the zebrafish Mycobacterium marinum infection model, which is a well-characterized model for tuberculosis progression with biomedical significance, mimicking hallmarks of human tuberculosis pathology. Importantly, we demonstrate the suitability of our system to directly study M. tuberculosis, showing for the first time that the human pathogen can propagate in this vertebrate model, resulting in similar early disease symptoms to those observed upon M. marinum infection. Our system is capable of screening for disease progression via robotic yolk injection of early embryos and visual flow screening of late-stage larvae. We also show that this system can reliably recapitulate the standard caudal vein injection method with a throughput level of 2,000 embryos per hour. We additionally demonstrate the possibility of studying signal transduction leading to disease progression using reverse genetics at high-throughput levels. Importantly, we use reference compounds to validate our system in the testing of molecules that prevent tuberculosis progression, making it highly suited for investigating novel anti-tuberculosis compounds in vivo.


Asunto(s)
Biomarcadores/análisis , Ensayos Analíticos de Alto Rendimiento/métodos , Tuberculosis/diagnóstico , Animales , Antituberculosos/aislamiento & purificación , Antituberculosos/uso terapéutico , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero , Humanos , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/patología , Mycobacterium marinum/fisiología , Pronóstico , Tuberculosis/tratamiento farmacológico , Tuberculosis/patología , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología
10.
Mol Immunol ; 48(1-3): 179-90, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20851470

RESUMEN

TRAF6 is a key player at the cross-roads of development and immunity. The analysis of its in vivo molecular function is a great challenge since severe developmental defects and early lethality caused by Traf6 deficiency in knock-out mice interfere with analyses of the immune response. In this study we have used a new strategy to analyze the function of Traf6 in a zebrafish-Salmonella infectious disease model. In our approach the effect of a Traf6 translation-blocking morpholino was titrated down to avoid developmental defects and the response to infection under these conditions was studied using the combination of microarray analysis and whole transcriptome deep sequencing. Transcriptome profiling of the traf6 knock-down allowed the identification of a gene set whose responsiveness during infection is highly dependent on Traf6. Expression trend analysis based on the resulting datasets identified nine clusters of genes with characteristic transcription response profiles, demonstrating Traf6 has a dynamic role as a positive and negative regulator. Among the Traf6-dependent genes was a large set of well known anti-microbial and inflammatory genes. Additionally, we identified several genes which were not previously linked to a response to microbial infection, such as the fertility hormone gene gnrh2 and the DNA-damage regulated autophagy modulator 1 gene dram1. With the use of the zebrafish embryo model we have now analyzed the in vivo function of Traf6 in the innate immune response without interference of adaptive immunity.


Asunto(s)
Inmunidad Innata/fisiología , Factor 6 Asociado a Receptor de TNF/inmunología , Proteínas de Pez Cebra/inmunología , Pez Cebra/inmunología , Animales , Embrión no Mamífero , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Infect Immun ; 74(4): 2436-41, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16552074

RESUMEN

Innate immunity signaling mechanisms during vertebrate embryogenesis are largely unknown. To study Toll-like receptor (TLR) signaling function in the zebrafish embryo model, we designed an experimental setup for antisense morpholino knockdown under conditions of bacterial infection. Clearance of Salmonella enterica serovar Typhimurium Ra bacteria was significantly impaired after knockdown of myeloid differentiation factor 88 (MyD88), a common adaptor protein in TLR and interleukin-1 receptor signaling. Thereby, we demonstrate for the first time that the innate immune response of the developing embryo involves MyD88-dependent signaling, which further establishes the zebrafish embryo as a model for the study of vertebrate innate immunity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de la Membrana Bacteriana Externa/biosíntesis , Inmunidad Innata , Factor 88 de Diferenciación Mieloide/fisiología , Transducción de Señal/inmunología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Pez Cebra/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Modelos Animales de Enfermedad , Inmunidad Innata/genética , Datos de Secuencia Molecular , Factor 88 de Diferenciación Mieloide/genética , Oligonucleótidos Antisentido/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones por Salmonella/genética , Infecciones por Salmonella/inmunología , Salmonella typhimurium/genética , Salmonella typhimurium/inmunología , Transducción de Señal/genética , Receptores Toll-Like/genética , Receptores Toll-Like/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA