Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468657

RESUMEN

DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP. Pias1 knockdown (KD) in HD mice had a normalizing effect on HD transcriptional dysregulation associated with synaptic function and disease-associated transcriptional coexpression modules enriched for DNA damage repair mechanisms as did reduction of PIAS1 in HD iPSC-derived neurons. KD also restored mutant HTT-perturbed enzymatic activity of PNKP and modulated genomic integrity of several transcriptionally normalized genes. The findings here now link SUMO modifying machinery to DNA damage repair responses and transcriptional modulation in neurodegenerative disease.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Reparación del ADN , ADN/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Inhibidoras de STAT Activados/genética , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Animales , Diferenciación Celular , ADN/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/patología , Cultivo Primario de Células , Proteínas Inhibidoras de STAT Activados/antagonistas & inhibidores , Proteínas Inhibidoras de STAT Activados/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/antagonistas & inhibidores , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Transcripción Genética
2.
Hum Mol Genet ; 29(2): 202-215, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31696228

RESUMEN

Transcriptional and epigenetic alterations occur early in Huntington's disease (HD), and treatment with epigenetic modulators is beneficial in several HD animal models. The drug JQ1, which inhibits histone acetyl-lysine reader bromodomains, has shown promise for multiple cancers and neurodegenerative disease. We tested whether JQ1 could improve behavioral phenotypes in the R6/2 mouse model of HD and modulate HD-associated changes in transcription and epigenomics. R6/2 and non-transgenic (NT) mice were treated with JQ1 daily from 5 to 11 weeks of age and behavioral phenotypes evaluated over this period. Following the trial, cortex and striatum were isolated and subjected to mRNA-seq and ChIP-seq for the histone marks H3K4me3 and H3K27ac. Initially, JQ1 enhanced motor performance in NT mice. In R6/2 mice, however, JQ1 had no effect on rotarod or grip strength but exacerbated weight loss and worsened performance on the pole test. JQ1-induced gene expression changes in NT mice were distinct from those in R6/2 and primarily involved protein translation and bioenergetics pathways. Dysregulation of HD-related pathways in striatum was exacerbated by JQ1 in R6/2 mice, but not in NTs, and JQ1 caused a corresponding increase in the formation of a mutant huntingtin protein-dependent high molecular weight species associated with pathogenesis. This study suggests that drugs predicted to be beneficial based on their mode of action and effects in wild-type or in other neurodegenerative disease models may have an altered impact in the HD context. These observations have important implications in the development of epigenetic modulators as therapies for HD.


Asunto(s)
Azepinas/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Triazoles/farmacología , Acetilación , Animales , Escala de Evaluación de la Conducta , Síntomas Conductuales/tratamiento farmacológico , Corteza Cerebral/patología , Secuenciación de Inmunoprecipitación de Cromatina , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Ontología de Genes , Histonas/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
3.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961595

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the HTT gene encoding huntingtin. Prior reports have established a correlation between CAG expanded HTT and altered gene expression. However, the mechanisms leading to disruption of RNA processing in HD remain unclear. Here, our analysis of the reported HTT protein interactome identifies interactions with known RNA-binding proteins (RBPs). Total, long-read sequencing and targeted RASL-seq of RNAs from cortex and striatum of the HD mouse model R6/2 reveals increased exon skipping which is confirmed in Q150 and Q175 knock-in mice and in HD human brain. We identify the RBP TDP-43 and the N6-methyladenosine (m6A) writer protein methyltransferase 3 (METTL3) to be upstream regulators of exon skipping in HD. Along with this novel mechanistic insight, we observe decreased nuclear localization of TDP-43 and cytoplasmic accumulation of phosphorylated TDP-43 in HD mice and human brain. In addition, TDP-43 co-localizes with HTT in human HD brain forming novel nuclear aggregate-like bodies distinct from mutant HTT inclusions or previously observed TDP-43 pathologies. Binding of TDP-43 onto RNAs encoding HD-associated differentially expressed and aberrantly spliced genes is decreased. Finally, m6A RNA modification is reduced on RNAs abnormally expressed in striatum from HD R6/2 mouse brain, including at clustered sites adjacent to TDP-43 binding sites. Our evidence supports TDP-43 loss of function coupled with altered m6A modification as a novel mechanism underlying alternative splicing/unannotated exon usage in HD and highlights the critical nature of TDP-43 function across multiple neurodegenerative diseases.

4.
Stem Cell Reports ; 14(3): 406-419, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32109367

RESUMEN

Aberrant neuronal development and the persistence of mitotic cellular populations have been implicated in a multitude of neurological disorders, including Huntington's disease (HD). However, the mechanism underlying this potential pathology remains unclear. We used a modified protocol to differentiate induced pluripotent stem cells (iPSCs) from HD patients and unaffected controls into neuronal cultures enriched for medium spiny neurons, the cell type most affected in HD. We performed single-cell and bulk transcriptomic and epigenomic analyses and demonstrated that a persistent cyclin D1+ neural stem cell (NSC) population is observed selectively in adult-onset HD iPSCs during differentiation. Treatment with a WNT inhibitor abrogates this NSC population while preserving neurons. Taken together, our findings identify a mechanism that may promote aberrant neurodevelopment and adult neurogenesis in adult-onset HD striatal neurons with the potential for therapeutic compensation.


Asunto(s)
Enfermedad de Huntington/patología , Células Madre Pluripotentes Inducidas/patología , Neuronas/patología , Vía de Señalización Wnt , Adulto , Edad de Inicio , Ciclo Celular/genética , Diferenciación Celular/genética , Células Cultivadas , Epigénesis Genética , Humanos , Enfermedad de Huntington/genética , Mitosis , Neostriado/patología , Células-Madre Neurales/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA