Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Glob Chang Biol ; 27(24): 6409-6422, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34465002

RESUMEN

Land use and climate change are anticipated to affect phytoplankton of lakes worldwide. The effects will depend on the magnitude of projected land use and climate changes and lake sensitivity to these factors. We used random forests fit with long-term (1971-2016) phytoplankton and cyanobacteria abundance time series, climate observations (1971-2016), and upstream catchment land use (global Clumondo models for the year 2000) data from 14 European and 15 North American lakes basins. We projected future phytoplankton and cyanobacteria abundance in the 29 focal lake basins and 1567 lakes across focal regions based on three land use (sustainability, middle of the road, and regional rivalry) and two climate (RCP 2.6 and 8.5) scenarios to mid-21st century. On average, lakes are expected to have higher phytoplankton and cyanobacteria due to increases in both urban land use and temperature, and decreases in forest habitat. However, the relative importance of land use and climate effects varied substantially among regions and lakes. Accounting for land use and climate changes in a combined way based on extensive data allowed us to identify urbanization as the major driver of phytoplankton development in lakes located in urban areas, and climate as major driver in lakes located in remote areas where past and future land use changes were minimal. For approximately one-third of the studied lakes, both drivers were relatively important. The results of this large scale study suggest the best approaches for mitigating the effects of human activity on lake phytoplankton and cyanobacteria will depend strongly on lake sensitivity to long-term change and the magnitude of projected land use and climate changes at a given location. Our quantitative analyses suggest local management measures should focus on retaining nutrients in urban landscapes to prevent nutrient pollution from exacerbating ongoing changes to lake ecosystems from climate change.


Asunto(s)
Cianobacterias , Fitoplancton , Cambio Climático , Ecosistema , Humanos , Lagos
2.
Glob Chang Biol ; 27(19): 4615-4629, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34241940

RESUMEN

Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed-a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs-is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll-a (Chl-a) concentration (a proxy for phytoplankton biomass) across 5-53 years for each lake. Earlier runoff generally corresponded to lower summer Chl-a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice-out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl-a concentrations; however, our tested covariates had little effect on the relationship. Date of ice-out was not clearly related to summer Chl-a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.


Asunto(s)
Lagos , Fitoplancton , Clorofila , Clorofila A , Estaciones del Año
3.
Limnol Oceanogr ; 66(2): 481-495, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33776144

RESUMEN

Factors that regulate planktonic communities under lake ice may be vastly different from those during the open-water season. Expected changes in light availability, ice cover, and snowfall associated with climate change have accelerated the need to understand food web processes under ice. We hypothesized that light limitation (bottom-up control) outweighs zooplankton grazing (top-down control) influence on phytoplankton biovolume and community structure under ice in a north temperate lake. Using in situ under-ice mesocosm experiments, we found that light had stronger effects on phytoplankton abundance than zooplankton, as expected. Specifically, low light limited growth of diatoms, cryptophytes, and chrysophytes. Zooplankton, however, also significantly affected some individual phytoplankton groups by decreasing diatoms and cryptophytes, in contrast to the common assumption that zooplankton grazing has negligible effects under ice. Ammonium and soluble reactive phosphorus (SRP) were lowest in high light treatments presumably through uptake by phytoplankton, whereas ammonium and SRP were highest in high zooplankton treatments, likely a result of zooplankton excretion. In situ experimental studies are commonly applied to understand food web dynamics in open-water conditions, but are extremely rare under ice. Our results suggest that changes in the light environment under ice have significant, rapid effects on phytoplankton growth and community structure and that zooplankton may play a more active role in winter food webs than previously thought. Changes in snow and ice dynamics associated with climate change may alter the light environment in ice-covered systems and significantly influence community structure.

4.
Glob Chang Biol ; 26(5): 2756-2784, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32133744

RESUMEN

In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.


Asunto(s)
Lagos , Fitoplancton , Cambio Climático , Ecosistema , Ríos
5.
Ecol Lett ; 20(1): 98-111, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889953

RESUMEN

Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.


Asunto(s)
Ecosistema , Cubierta de Hielo , Lagos , Plancton/fisiología , Estaciones del Año
6.
Freshw Biol ; 65(11): 1997-2009, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33288969

RESUMEN

Diel vertical migration (DVM) is common in aquatic organisms. The trade-off between reduced predation risk in deeper, darker waters during the day and increased foraging opportunities closer to the surface at night is a leading hypothesis for DVM behaviour.Diel vertical migration behaviour has dominated research and assessment frameworks for Mysis, an omnivorous mid-trophic level macroinvertebrate that exhibits strong DVM between benthic and pelagic habitats and plays key roles in many deep lake ecosystems. However, some historical literature and more recent evidence indicate that mysids also remain on the bottom at night, counter to expectations of DVM.We surveyed the freshwater Mysis literature using Web of Science (WoS; 1945-2019) to quantify the frequency of studies on demographics, diets, and feeding experiments that considered, assessed, or included Mysis that did not migrate vertically but remained in benthic habitats. We supplemented our WoS survey with literature searches for relevant papers published prior to 1945, journal articles and theses not listed in WoS, and additional references known to the authors but missing from WoS (e.g. only 47% of the papers used to evaluate in situ diets were identified by WoS).Results from the survey suggest that relatively little attention has been paid to the benthic components of Mysis ecology. Moreover, the literature suggests that reliance on Mysis sampling protocols using pelagic gear at night provides an incomplete picture of Mysis populations and their role in ecosystem structure and function.We summarise current knowledge of Mysis DVM and provide an expanded framework that more fully considers the role of benthic habitat. Acknowledging benthic habitat as an integral part of Mysis ecology will enable research to better understand the role of Mysis in food web processes.

7.
PLoS One ; 14(1): e0209567, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30625172

RESUMEN

Inherent differences between naturally-formed lakes and human-made reservoirs may play an important role in shaping zooplankton community structure. For example, because many reservoirs are created by impounding and managing lotic systems for specific human purposes, zooplankton communities may be affected by factors that are unique to reservoirs, such as shorter water residence times and a reservoir's management regime, compared to natural lakes. However, the environmental factors that structure zooplankton communities in natural lakes vs. reservoirs may vary at the continental scale and remain largely unknown. We analyzed data from the 2007 U.S. Environmental Protection Agency's National Lakes Assessment and the U.S. Army Corps of Engineers' National Inventory of Dams to compare large-bodied crustacean zooplankton communities (defined here as individuals retained by 0.243 mm mesh size) in natural lakes and reservoirs across the continental U.S. using multiple linear regressions and regression tree analyses. We found that large-bodied crustacean zooplankton density was overall higher in natural lakes compared to reservoirs when the effect of latitude was controlled. The difference between waterbody types was driven by calanoid copepods, which were also more likely to be dominant in the >0.243 mm zooplankton community in natural lakes than in reservoirs. Regression tree analyses revealed that water residence time was not a major driver of calanoid copepod density in natural lakes but was one of the most important drivers of calanoid copepod density in reservoirs, which had on average 0.5-year shorter water residence times than natural lakes. Reservoirs managed for purposes that resulted in shorter residence times (e.g., hydroelectric power) had lower zooplankton densities than reservoirs managed for purposes that resulted in longer residence times (e.g., irrigation). Consequently, our results indicate that water residence time may be an important characteristic driving differing large-bodied zooplankton dynamics between reservoirs and natural lakes.


Asunto(s)
Copépodos , Ecosistema , Lagos , Zooplancton , Animales , Densidad de Población , Dinámica Poblacional , Estados Unidos
8.
Sci Rep ; 7: 43890, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262715

RESUMEN

Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (Tw-Ta) as a proxy for sensible heat flux (QH). If QH is directed upward, corresponding to positive Tw-Ta, it can enhance CO2 and CH4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative Tw-Ta across small ponds, lakes, streams/rivers and the sea shore (i.e. downward QH), with Tw-Ta becoming increasingly negative with increasing Ta. Further examination of Tw-Ta using high-frequency temperature data from inland waters across the globe confirmed that Tw-Ta is linearly related to Ta. Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative Tw-Ta with increasing annual mean Ta since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative Tw-Ta, thereby reducing CO2 and CH4 transfer velocities from inland waters into the atmosphere.

9.
Comp Med ; 54(6): 656-63, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15679264

RESUMEN

The Guide for the Care and Use of Laboratory Animals (the Guide) is widely accepted as the housing standard by most Institutional Animal Care and Use Committees. The recommendations are based on best professional judgment rather than experimental data. Current efforts are directed toward replacing these guidelines with data-driven, species-appropriate standards. Our studies were undertaken to determine the optimum housing density for C57BL/6J mice, the most commonly used inbred mouse strain. Four-week-old mice were housed for 8 weeks at four densities (the recommended approximately 12 in2 [ca. 77.4 cm2]/mouse down to 5.6 in2 [ca. 36.1 cm2]/mouse) in three cage types with various amounts of floor space. Housing density did not affect a variety of physiologic parameters but did affect certain micro-environmental parameters, although these remained within accepted ranges. A second study was undertaken housing C57BL/6J mice with as little as 3.2 in2/mouse (ca. 20.6 cm2). The major effect was elevated ammonia concentrations that exceeded limits acceptable in the workplace at increased housing densities; however, the nasal passages and eyeballs of the mice remained microscopically normal. On the basis of these results, we conclude that C57BL/6J mice as large as 29 g may be housed with 5.6 in2 of floor space per mouse. This area is approximately half the floor space recommended in the Guide. The role of the Guide is to ensure that laboratory animals are well treated and housed in a species-appropriate manner. Our data suggest that current policies could be altered in order to provide the optimal habitation conditions matched to this species' social needs.


Asunto(s)
Crianza de Animales Domésticos/normas , Ratones Endogámicos C57BL , Factores de Edad , Crianza de Animales Domésticos/métodos , Bienestar del Animal , Animales , Dióxido de Carbono , Ambiente Controlado , Femenino , Guías como Asunto , Humedad , Masculino , Ratones , Especificidad de la Especie , Temperatura , Testosterona/orina
10.
Comp Med ; 53(5): 487-92, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14655990

RESUMEN

Laboratory animal allergy is a serious health problem. We examined several possible allergen-reducing strategies that might be effective in the working mouse room. Ambient allergen concentrations were measured when mice were maintained under several conditions: conventional housing versus ventilated cage racks operated under negative or positive pressure. We found that housing mice in ventilated cages operated under negative pressure and using ventilated changing tables reduced ambient mouse allergen (Mus m 1) concentrations tenfold, compared with values when mice were housed in conventional caging and using a conventional (non-ventilated) changing table. Housing mice in positively pressurized cages versus conventional cages did not reduce ambient allergen values. Cleaning mouse rooms at an accelerated frequency also did not reduce ambient Mus m 1 concentration. We also quantified ambient allergen values in several areas of The Jackson Laboratory. A facility-wide survey of Mus m 1 concentrations indicated that allergen concentrations were undetectable in control areas, but ranged from a mean (+/- SEM) 0.11 +/- 0.02 ng/m3 to 5.40 +/- 0.30 ng/m3 in mouse rooms with different cage types. The percentage of animal caretakers reporting allergy symptoms correlated significantly with ambient allergen concentrations: 12.9% reported symptoms in the rooms with the lowest allergen concentration (0.14 +/- 0.02 ng/m3), but 45.9% reported symptoms in rooms with the highest concentration (2.3 +/- 0.4 ng/m3). These data indicate that existing technology can significantly reduce exposure to laboratory animal allergens and improve the health of animal caretakers.


Asunto(s)
Contaminación del Aire Interior/prevención & control , Alérgenos/efectos adversos , Animales de Laboratorio/inmunología , Exposición a Riesgos Ambientales/prevención & control , Exposición por Inhalación/prevención & control , Enfermedades Profesionales/prevención & control , Contaminación del Aire Interior/análisis , Crianza de Animales Domésticos/instrumentación , Técnicos de Animales , Animales , Espacios Confinados , Ergonomía , Vivienda para Animales , Humanos , Hipersensibilidad/epidemiología , Hipersensibilidad/inmunología , Hipersensibilidad/prevención & control , Maine/epidemiología , Maryland/epidemiología , Ratones , Enfermedades Profesionales/epidemiología , Enfermedades Profesionales/inmunología , Ventilación
11.
Contemp Top Lab Anim Sci ; 43(4): 12-7, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15264763

RESUMEN

A variety of environmental factors can affect the outcomes of studies using laboratory rodents. One such factor is bedding. Several new bedding materials and processing methods have been introduced to the market in recent years, but there are few reports of their performance. In the studies reported here, we have assessed the cage micro-environment (in-cage ammonia levels, temperature, and humidity) of mice housed on various kinds of bedding and their combinations. We also compared results for bedding supplied as Nestpaks versus loose bedding. We studied C57BL/6J mice (commonly used) and NOD/LtJ mice (heavy soilers) that were maintained, except in one study, in static duplex cages. In general, we observed little effect of bedding type on in-cage temperature or humidity; however, there was considerable variation in ammonia concentrations. The lowest ammonia concentrations occurred in cages housing mice on hardwood bedding or a mixture of corncob and alpha cellulose. In one experiment comparing the micro-environments of NOD/LtJ male mice housed on woodpulp fiber bedding in static versus ventilated caging, we showed a statistically significant decrease in ammonia concentrations in ventilated cages. Therefore, our data show that bedding type affects the micro-environment in static cages and that effects may differ for ventilated cages, which are being used in vivaria with increasing frequency.


Asunto(s)
Crianza de Animales Domésticos/métodos , Animales de Laboratorio , Ambiente Controlado , Vivienda para Animales , Amoníaco/análisis , Animales , Atmósfera/química , Vivienda para Animales/clasificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD
12.
Contemp Top Lab Anim Sci ; 42(6): 16-21, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14615955

RESUMEN

Previous studies from our institution have shown that ventilated caging run at negative pressure to a mouse room dramatically reduced exposure of personnel to the major mouse allergen, Mus m 1. The current study was designed to determine whether negative cage ventilation posed an inordinate risk for spread of infectious agents between cages and/or racks. B6;129S-Tnfsf5(tm1Imx)/J (TNF) mice, which were naturally and persistently infected with Pneumocystis carinii, Helicobacter bilis, and Pasteurella pneumotropica, were used as the source of infections. Uninfected C3Smn.CB17-Prkdc(scid)/J (SCID) mice with severe combined immunodeficiency were used to detect transmission. The following methods were used to detect transmission of infections: polymerase chain reaction (PCR) amplification and histological examination of lungs for P. carinii; PCR of fecal specimens or cecal contents for H. bilis; and culture of oropharyngeal, tracheal, or vaginal swabs for P. pneumotropica. We determined whether transmission of the three agents occurred via direct contact (cohabitation), exposure to soiled bedding, and/or by handling naive SCID mice after handling infected TNF mice. During a 12-week period, all three infectious agents were readily transmitted to uninfected mice by cohabitation. Transmission was much less efficient and occurred later among mice exposed to contaminated bedding. Transmission did not occur as a result of handling. We then studied transmission of the three infectious agents among mice housed in individually ventilated cages run at negative pressure in a small, crowded mouse room. Transmission of P. carinii was detected at the end of the 12-month study in the densely populated room, probably because the exhaust from the changing station passed over soiled cages and caused aerosolization of particulates. Caging systems run at negative pressure effectively reduce personnel exposure to allergens and may also inhibit the transmission of infectious diseases.


Asunto(s)
Animales de Laboratorio/inmunología , Infecciones Bacterianas/veterinaria , Vivienda para Animales , Animales , Infecciones Bacterianas/prevención & control , Infecciones Bacterianas/transmisión , Cartilla de ADN , Ratones , Reacción en Cadena de la Polimerasa , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA