Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Chem Soc ; 146(23): 15860-15868, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814791

RESUMEN

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a benchmark hole-transporting (p-type) polymer that finds applications in diverse electronic devices. Most of its success is due to its facile synthesis in water, exceptional processability from aqueous solutions, and outstanding electrical performance in ambient. Applications in fields like (opto-)electronics, bioelectronics, and energy harvesting/storage devices often necessitate the complementary use of both p-type and n-type (electron-transporting) materials. However, the availability of n-type materials amenable to water-based polymerization and processing remains limited. Herein, we present a novel synthesis method enabling direct polymerization in water, yielding a highly conductive, water-processable n-type conjugated polymer, namely, poly[(2,2'-(2,5-dihydroxy-1,4-phenylene)diacetic acid)-stat-3,7-dihydrobenzo[1,2-b:4,5-b']difuran-2,6-dione] (PDADF), with remarkable electrical conductivity as high as 66 S cm-1, ranking among the highest for n-type polymers processed using green solvents. The new n-type polymer PDADF also exhibits outstanding stability, maintaining 90% of its initial conductivity after 146 days of storage in air. Our synthetic approach, along with the novel polymer it yields, promises significant advancements for the sustainable development of organic electronic materials and devices.

2.
Angew Chem Int Ed Engl ; : e202407273, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770935

RESUMEN

A new approach to control the n-doping reaction of organic semiconductors is reported using surface-functionalized gold nanoparticles (f-AuNPs) with alkylthiols acting as the catalyst only upon mild thermal activation. To demonstrate the versatility of this methodology, the reaction of the n-type dopant precursor N-DMBI-H with several molecular and polymeric semiconductors at different temperatures with/without f-AuNPs, vis-à-vis the unfunctionalized catalyst AuNPs, was investigated by spectroscopic, morphological, charge transport, and kinetic measurements as well as, computationally, the thermodynamic of catalyst activation. The combined experimental and theoretical data demonstrate that f-AuNPs is inactive at room temperature both in solution and in the solid state, catalyst activation occurs rapidly at mild temperatures (~ 70 °C) and the doping reaction completes in few seconds affording large electrical conductivities (~ 10 - 140 S cm-1). The implementation of this methodology enables the use of semiconductor+dopant+catalyst solutions, will broaden the use of the corresponding n-doped films in opto-electronic devices such as thin-film transistors, electrochemical transistors, solar cells, and thermoelectrics well as guide the design of new catalysts.

3.
J Am Chem Soc ; 144(6): 2546-2555, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35129329

RESUMEN

The development of systems capable of responding to environmental changes, such as humidity, requires the design and assembly of highly sensitive and efficiently transducing elements. Such a challenge can be mastered only by disentangling the role played by each component of the responsive system, thus ultimately achieving high performance by optimizing the synergistic contribution of all functional elements. Here, we designed and synthesized a novel [1]benzothieno[3,2-b][1]benzothiophene derivative equipped with hydrophilic oligoethylene glycol lateral chains (OEG-BTBT) that can electrically transduce subtle changes in ambient humidity with high current ratios (>104) at low voltages (2 V), reaching state-of-the-art performance. Multiscale structural, spectroscopical, and electrical characterizations were employed to elucidate the role of each device constituent, viz., the active material's BTBT core and OEG side chains, and the device interfaces. While the BTBT molecular core promotes the self-assembly of (semi)conducting crystalline films, its OEG side chains are prone to adsorb ambient moisture. These chains act as hotspots for hydrogen bonding with atmospheric water molecules that locally dissociate when a bias voltage is applied, resulting in a mixed electronic/protonic long-range conduction throughout the film. Due to the OEG-BTBT molecules' orientation with respect to the surface and structural defects within the film, water molecules can access the humidity-sensitive sites of the SiO2 substrate surface, whose hydrophilicity can be tuned for an improved device response. The synergistic chemical engineering of materials and interfaces is thus key for designing highly sensitive humidity-responsive electrical devices whose mechanism relies on the interplay of electron and proton transport.

4.
Angew Chem Int Ed Engl ; 61(7): e202113078, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34797584

RESUMEN

Three lactone-based rigid semiconducting polymers were designed to overcome major limitations in the development of n-type organic thermoelectrics, namely electrical conductivity and air stability. Experimental and theoretical investigations demonstrated that increasing the lactone group density by increasing the benzene content from 0 % benzene (P-0), to 50 % (P-50), and 75 % (P-75) resulted in progressively larger electron affinities (up to 4.37 eV), suggesting a more favorable doping process, when employing (N-DMBI) as the dopant. Larger polaron delocalization was also evident, due to the more planarized conformation, which is proposed to lead to a lower hopping energy barrier. As a consequence, the electrical conductivity increased by three orders of magnitude, to achieve values of up to 12 S cm and Power factors of 13.2 µWm-1  K-2 were thereby enabled. These findings present new insights into material design guidelines for the future development of air stable n-type organic thermoelectrics.

5.
Small ; 17(8): e2007593, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33464719

RESUMEN

High-performance flexible strain sensors are key components for the next generation of wearable health monitoring devices. Here, the authors have fabricated a novel strain sensor based on gold nanoparticles (AuNPs) interconnected by flexible and responsive molecular linkers. The combination of conductive AuNPs (25 nm in diameter) with tetra(ethylene glycol) dithiol (SH-TEG-SH) linkers yields a covalent 3D network which can be directly deposited onto prepatterned flexible supports exposing interdigitated Au electrodes. The electrically insulating nature of the linkers effectively defines the tunneling modulated charge transfer through the AuNPs network. When compressive/tensile strain is applied, the molecular linkers adopt a compressed/stretched conformation thus decreasing/increasing the interparticle distance, ultimately yielding an exponential increase/decrease of the tunneling current when voltage is applied. The strain sensor displays state-of-the-art performances including a highly sensitive response to both tensile and compressive strain, as quantified by a high gauge factor (GF≈126) combined with other superior sensing properties like high flexibility, short response time (16.1 ms), and good robustness (>2000 cycles). Finally, the applicability of the device for health monitoring is demonstrated: high-resolution artery pulse waves are acquired by placing the strain sensor onto the skin allowing the extraction of important physical parameters for human-health assessment.


Asunto(s)
Nanopartículas del Metal , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Electrodos , Oro , Humanos
6.
Nanotechnology ; 29(36): 365201, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-29894980

RESUMEN

The predominance of interface resistance makes current crowding ubiquitous in short channel organic electronics devices but its impact on spin transport has never been considered. We investigate electrochemically doped nanoscale PBTTT short channel devices and observe the smallest reported values of crowding lengths, found for sub-100 nm electrodes separation. These observed values are nevertheless exceeding the spin diffusion lengths reported in the literature. We discuss here how current crowding can be taken into account in the framework of the Fert-Jaffrès model of spin current propagation in heterostructures, and predict that the anticipated resulting values of magnetoresistance can be significantly reduced. Current crowding therefore impacts spin transport applications and interpretation of the results on spin valve devices.

7.
Mater Horiz ; 10(10): 4213-4223, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37477499

RESUMEN

Organic electrochemical transistors (OECTs) are a rapidly advancing technology that plays a crucial role in the development of next-generation bioelectronic devices. Recent advances in p-type/n-type organic mixed ionic-electronic conductors (OMIECs) have enabled power-efficient complementary OECT technologies for various applications, such as chemical/biological sensing, large-scale logic gates, and neuromorphic computing. However, ensuring long-term operational stability remains a significant challenge that hinders their widespread adoption. While p-type OMIECs are generally more stable than n-type OMIECs, they still face limitations, especially during prolonged operations. Here, we demonstrate that simple methylation of the pyrrole-benzothiazine-based (PBBT) ladder polymer backbone results in stable and high-performance p-type OECTs. The methylated PBBT (PBBT-Me) exhibits a 25-fold increase in OECT mobility and an impressive 36-fold increase in µC* (mobility × volumetric capacitance) compared to the non-methylated PBBT-H polymer. Combining the newly developed PBBT-Me with the ladder n-type poly(benzimidazobenzophenanthroline) (BBL), we developed complementary inverters with a record-high DC gain of 194 V V-1 and excellent stability. These state-of-the-art complementary inverters were used to demonstrate leaky integrate-and-fire type organic electrochemical neurons (LIF-OECNs) capable of biologically relevant firing frequencies of about 2 Hz and of operating continuously for up to 6.5 h. This achievement represents a significant improvement over previous results and holds great potential for developing stable bioelectronic circuits capable of in-sensor computing.

8.
Nat Commun ; 14(1): 8454, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38114560

RESUMEN

Water-based conductive inks are vital for the sustainable manufacturing and widespread adoption of organic electronic devices. Traditional methods to produce waterborne conductive polymers involve modifying their backbone with hydrophilic side chains or using surfactants to form and stabilize aqueous nanoparticle dispersions. However, these chemical approaches are not always feasible and can lead to poor material/device performance. Here, we demonstrate that ground-state electron transfer (GSET) between donor and acceptor polymers allows the processing of water-insoluble polymers from water. This approach enables macromolecular charge-transfer salts with 10,000× higher electrical conductivities than pristine polymers, low work function, and excellent thermal/solvent stability. These waterborne conductive films have technological implications for realizing high-performance organic solar cells, with efficiency and stability superior to conventional metal oxide electron transport layers, and organic electrochemical neurons with biorealistic firing frequency. Our findings demonstrate that GSET offers a promising avenue to develop water-based conductive inks for various applications in organic electronics.

9.
Adv Mater ; 34(4): e2106235, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34658088

RESUMEN

Organic electrochemical transistors (OECTs) hold promise for developing a variety of high-performance (bio-)electronic devices/circuits. While OECTs based on p-type semiconductors have achieved tremendous progress in recent years, n-type OECTs still suffer from low performance, hampering the development of power-efficient electronics. Here, it is demonstrated that fine-tuning the molecular weight of the rigid, ladder-type n-type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n-type OECTs with record-high geometry-normalized transconductance (gm,norm  ≈ 11 S cm-1 ) and electron mobility × volumetric capacitance (µC* ≈ 26 F cm-1  V-1 s-1 ), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high-molecular-weight BBL than in the low-molecular-weight counterpart. OECT-based complementary inverters are also demonstrated with record-high voltage gains of up to 100 V V-1 and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub-1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic-electronic conductors and open for a new generation of power-efficient organic (bio-)electronic devices.

10.
Nat Nanotechnol ; 16(5): 592-598, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33633405

RESUMEN

Solution-processed semiconducting transition metal dichalcogenides are at the centre of an ever-increasing research effort in printed (opto)electronics. However, device performance is limited by structural defects resulting from the exfoliation process and poor inter-flake electronic connectivity. Here, we report a new molecular strategy to boost the electrical performance of transition metal dichalcogenide-based devices via the use of dithiolated conjugated molecules, to simultaneously heal sulfur vacancies in solution-processed transition metal disulfides and covalently bridge adjacent flakes, thereby promoting percolation pathways for the charge transport. We achieve a reproducible increase by one order of magnitude in field-effect mobility (µFE), current ratio (ION/IOFF) and switching time (τS) for liquid-gated transistors, reaching 10-2 cm2 V-1 s-1, 104 and 18 ms, respectively. Our functionalization strategy is a universal route to simultaneously enhance the electronic connectivity in transition metal disulfide networks and tailor on demand their physicochemical properties according to the envisioned applications.

11.
Nat Commun ; 12(1): 2354, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883549

RESUMEN

Conducting polymers, such as the p-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable, n-doped conducting polymers are also needed. Despite major efforts, no n-type equivalents to the benchmark PEDOT:PSS exist to date. Here, we report on the development of poly(benzimidazobenzophenanthroline):poly(ethyleneimine) (BBL:PEI) as an ethanol-based n-type conductive ink. BBL:PEI thin films yield an n-type electrical conductivity reaching 8 S cm-1, along with excellent thermal, ambient, and solvent stability. This printable n-type mixed ion-electron conductor has several technological implications for realizing high-performance organic electronic devices, as demonstrated for organic thermoelectric generators with record high power output and n-type organic electrochemical transistors with a unique depletion mode of operation. BBL:PEI inks hold promise for the development of next-generation bioelectronics and wearable devices, in particular targeting novel functionality, efficiency, and power performance.

12.
Adv Mater ; 33(13): e2007870, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33629772

RESUMEN

Charge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e., related to interactions with the dielectric layer), especially for n-type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) site energies in weakly interacting van der Waals solids and sources transient localization of the charge carriers. The molecular vibrations that drive transient localization typically operate at low-frequency (

13.
Nat Commun ; 11(1): 4731, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948763

RESUMEN

Mastering the dynamics of molecular assembly on surfaces enables the engineering of predictable structural motifs to bestow programmable properties upon target substrates. Yet, monitoring self-assembly in real time on technologically relevant interfaces between a substrate and a solution is challenging, due to experimental complexity of disentangling interfacial from bulk phenomena. Here, we show that graphene devices can be used as highly sensitive detectors to read out the dynamics of molecular self-assembly at the solid/liquid interface in-situ. Irradiation of a photochromic molecule is used to trigger the formation of a metastable self-assembled adlayer on graphene and the dynamics of this process are monitored by tracking the current in the device over time. In perspective, the electrical readout in graphene devices is a diagnostic and highly sensitive means to resolve molecular ensemble dynamics occurring down to the nanosecond time scale, thereby providing a practical and powerful tool to investigate molecular self-organization in 2D.

14.
Nanoscale ; 11(41): 19319-19326, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31478544

RESUMEN

We have engineered macroscopic 3D porous networks of gold nanoparticles (AuNPs) chemically interconnected by di-thiolated ethylene glycol oligomers. The formation of such superstructures has been followed by means of UV-Vis spectroscopy by monitoring the aggregation-dependent plasmonic band of such nanomaterials. The controlled chemical tethering of the AuNPs with di-thiolated linkers possessing a well-defined contour length rules the interparticle distance. The use of ad-hoc linkers ensures charge transport via direct tunneling and the hygroscopic nature of the ethylene glycol backbone allows interaction with moisture. Upon interaction with water molecules from the atmosphere, our 3D networks undergo swelling reducing the tunnelling current passing through the system. By exploiting such a behavior, we have devised a new approach for the fabrication of electrical resistive humidity sensors. For the first time we have also introduced a new strategy to fabricate stable and robust devices by covalently attaching our 3D networks to gold electrodes. Devices comprising both 4 (TEG) or 6 (HEG) ethylene glycol repetitive units combined with AuNPs exhibited (i) unprecedentedly high response speed (∼26 ms), (ii) short recovery time (∼250 ms) in the absence of any hysteresis effect, and (iii) a linear response to humidity changes characterized by a highest sensitivity of 51 kΩ per RH(%) for HEG- and 500 Ω per RH(%) for TEG-based devices. The employed green solution processing in water and the extreme robustness of our 3D networks make them interesting candidates for the fabrication of sensors which can operate under extreme conditions and for countless cycles.

15.
Adv Mater ; 31(1): e1804600, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30387217

RESUMEN

The development of pressure sensors is crucial for the implementation of electronic skins and for health monitoring integrated into novel wearable devices. Tremendous effort is devoted toward improving their sensitivity, e.g., by employing microstructured electrodes or active materials through cumbersome processes. Here, a radically new type of piezoresistive pressure sensor based on a millefeuille-like architecture of reduced graphene oxide (rGO) intercalated by covalently tethered molecular pillars holding on-demand mechanical properties are fabricated. By applying a tiny pressure to the multilayer structure, the electron tunnelling ruling the charge transport between successive rGO sheets yields a colossal decrease in the material's electrical resistance. Significantly, the intrinsic rigidity of the molecular pillars employed enables the fine-tuning of the sensor's sensitivity, reaching sensitivities as high as 0.82 kPa-1 in the low pressure region (0-0.6 kPa), with short response times (≈24 ms) and detection limit (7 Pa). The pressure sensors enable efficient heartbeat monitoring and can be easily transformed into a matrix capable of providing a 3D map of the pressure exerted by different objects.


Asunto(s)
Grafito/química , Monitoreo Fisiológico/métodos , Presión , Dispositivos Electrónicos Vestibles , Electricidad , Electrodos , Humanos , Límite de Detección , Monitoreo Fisiológico/instrumentación
16.
J Phys Chem Lett ; 10(3): 540-547, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30649889

RESUMEN

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) recently emerged as novel materials displaying a wide variety of physicochemical properties that render them unique scaffolds for high-performance (opto)electronics. The controlled physisorption of molecules on the TMD surface is a viable approach for tuning their optical and electronic properties. Solvents, made of small aromatic molecules, are frequently employed for the cleaning of the 2D materials or as a "dispersant" for their chemical functionalization with larger (macro)molecules, without considering their potential key effect in locally modifying the characteristics of 2D materials. In this work, we demonstrate how the electronic and optical properties of a mechanically exfoliated monolayer of MoS2 and WSe2 are modified when physically interacting with small aromatic molecules of common solvents. Low-temperature photoluminescence (PL) spectra recorded at 78 K revealed that physisorbed benzene derivatives could modulate the charge carrier density in monolayer TMDs, hence affecting the switching between a neutral exciton and trion (charged exciton). By combining experimental evidence with density functional theory calculations, we confirm that charge-transfer doping on TMDs depends not only on the difference in chemical potential between molecules and 2D materials but also on the thermodynamic stability of physisorption. Our results provide unambiguous evidences of the great potential of optical and electrical tuning of monolayer MoS2 and WSe2 by physisorption of small aromatic solvent molecules, which is highly relevant for both fundamental studies and device application purposes.

17.
ACS Nano ; 13(10): 11613-11622, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31509382

RESUMEN

WSe2 is a layered ambipolar semiconductor enabling hole and electron transport, which renders it a suitable active component for logic circuitry. However, solid-state devices based on single- and bilayer WSe2 typically exhibit unipolar transport and poor electrical performance when conventional SiO2 dielectric and Au electrodes are used. Here, we show that silane-containing functional molecules form ordered monolayers on the top of the WSe2 surface, thereby boosting its electrical performance in single- and bilayer field-effect transistors. In particular, by employing SiO2 dielectric substrates and top Au electrodes, we measure unipolar mobility as high as µh = 150 cm2 V-1 s-1 and µe = 17.9 cm2 V-1 s-1 in WSe2 single-layer devices when ad hoc molecular monolayers are chosen. Additionally, by asymmetric double-side functionalization with two different molecules, we provide opposite polarity to the top and bottom layer of bilayer WSe2, demonstrating nearly balanced ambipolarity at the bilayer limit. Our results indicate that the controlled functionalization of the two sides of the WSe2 mono- and bilayer flakes with highly ordered molecular monolayers offers the possibility to simultaneously achieve energy level engineering and defect functionalization, representing a path toward deterministic control over charge transport in 2D materials.

18.
ACS Nano ; 11(2): 2000-2007, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28117966

RESUMEN

Achieving nanoscale control over the crystalline structure and morphology of electroactive polymer films and the possibility to transfer them onto any solid substrate are important tasks for the fabrication of high-performance organic/polymeric field-effect transistors (FETs). In this work, we demonstrate that ultrathin active layers preassembled at the water/air interface can possess high, anisotropic, and substrate-independent mobility in polymer FETs. By exploiting a modified approach to the Langmuir-Schaeffer technique, we self-assemble conjugated polymers in fibrillar structures possessing controlled thickness, nanoscale structure, and morphology; these highly ordered nanofibrils can be transferred unaltered onto any arbitrary substrate. We show that FETs based on these films possess high and anisotropic hole mobility approaching 1 cm2 V-1 s-1 along the nanofibrils, being over 1 order of magnitude beyond the state-of-the-art for Langmuir-Schaefer polymer FETs. Significantly, we demonstrate that the FET performances are independent of the chemical nature and dielectric permittivity of the substrate, overcoming a critical limit in the field of polymer FETs. Our method allows the fabrication of ultrathin films for low-cost, high-performance, transparent, and flexible devices supported on any dielectric substrate.

19.
Adv Mater ; 29(38)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28741739

RESUMEN

Nanostructured materials characterized by high surface-volume ratio hold the promise to constitute the active materials for next-generation sensors. Solution-processed hybrid organohalide perovskites, which have been extensively used in the last few years for optoelectronic applications, are characterized by a self-assembled nanostructured morphology, which makes them an ideal candidate for gas sensing. Hitherto, detailed studies of the dependence of their electrical characteristics on the environmental atmosphere have not been performed, and even the effect of a ubiquitous gas such as O2 has been widely overlooked. Here, the electrical response of organohalide perovskites to oxygen is studied. Surprisingly, a colossal increase (3000-fold) in the resistance of perovskite-based lateral devices is found when measured in a full oxygen atmosphere, which is ascribed to a trap healing mechanism originating from an O2 -mediated iodine vacancies filling. A variation as small as 70 ppm in the oxygen concentration can be detected. The effect is fast (<400 ms) and fully reversible, making organohalide perovskites ideal active materials for oxygen sensing. The effect of oxygen on the electrical characteristics of organohalide perovskites must be taken into deep consideration for the design and optimization of any other perovskite-based (opto-) electronic device working in ambient conditions.

20.
Adv Mater ; 29(41)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28901581

RESUMEN

This study reports a novel green chemistry approach to assemble copper-nanowires/reduced-graphene-oxide hybrid coatings onto inorganic and organic supports. Such films are robust and combine sheet resistances (<30 Ω sq-1 ) and transparencies in the visible region (transmittance > 70%) that are rivalling those of indium-tin oxide. These electrodes are suitable for flexible electronic applications as they show a sheet resistance change of <4% after 10 000 bending cycles at a bending radius of 1.0 cm, when supported on polyethylene terephthalate foils. Significantly, the wet-chemistry method involves the preparation of dispersions in environmentally friendly solvents and avoids the use of harmful reagents. Such inks are processed at room temperature on a wide variety of surfaces by spray coating. As a proof-of-concept, this study demonstrates the successful use of such coatings as electrodes in high-performance electrochromic devices. The robustness of the electrodes is demonstrated by performing several tens of thousands of cycles of device operation. These unique conducting coatings hold potential for being exploited as transparent electrodes in numerous optoelectronic applications such as solar cells, light-emitting diodes, and displays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA