Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37747104

RESUMEN

During neural circuit formation, axons navigate from one intermediate target to the next, until they reach their final target. At intermediate targets, axons switch from being attracted to being repelled by changing the guidance receptors on the growth cone surface. For smooth navigation of the intermediate target and the continuation of their journey, the switch in receptor expression has to be orchestrated in a precisely timed manner. As an alternative to changes in expression, receptor function could be regulated by phosphorylation of receptors or components of signaling pathways. We identified Cables1 as a linker between floor-plate exit of commissural axons, regulated by Slit/Robo signaling, and the rostral turn of post-crossing axons, regulated by Wnt/Frizzled signaling. Cables1 localizes ß-catenin, phosphorylated at tyrosine 489 by Abelson kinase, to the distal axon, which in turn is necessary for the correct navigation of post-crossing commissural axons in the developing chicken spinal cord.


Asunto(s)
Orientación del Axón , Axones , Orientación del Axón/fisiología , Axones/metabolismo , Conos de Crecimiento , Médula Espinal/metabolismo , Vía de Señalización Wnt , Animales , Pollos
2.
Hum Mol Genet ; 31(19): 3325-3340, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35604360

RESUMEN

Intellectual disability (ID) is a neurodevelopmental disorder frequently caused by monogenic defects. In this study, we collected 14 SEMA6B heterozygous variants in 16 unrelated patients referred for ID to different centers. Whereas, until now, SEMA6B variants have mainly been reported in patients with progressive myoclonic epilepsy, our study indicates that the clinical spectrum is wider and also includes non-syndromic ID without epilepsy or myoclonus. To assess the pathogenicity of these variants, selected mutated forms of Sema6b were overexpressed in Human Embryonic Kidney 293T (HEK293T) cells and in primary neuronal cultures. shRNAs targeting Sema6b were also used in neuronal cultures to measure the impact of the decreased Sema6b expression on morphogenesis and synaptogenesis. The overexpression of some variants leads to a subcellular mislocalization of SEMA6B protein in HEK293T cells and to a reduced spine density owing to loss of mature spines in neuronal cultures. Sema6b knockdown also impairs spine density and spine maturation. In addition, we conducted in vivo rescue experiments in chicken embryos with the selected mutated forms of Sema6b expressed in commissural neurons after knockdown of endogenous SEMA6B. We observed that expression of these variants in commissural neurons fails to rescue the normal axon pathway. In conclusion, identification of SEMA6B variants in patients presenting with an overlapping phenotype with ID and functional studies highlight the important role of SEMA6B in neuronal development, notably in spine formation and maturation and in axon guidance. This study adds SEMA6B to the list of ID-related genes.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Semaforinas , Animales , Orientación del Axón , Embrión de Pollo , Espinas Dendríticas , Epilepsia/genética , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Semaforinas/genética
3.
J Neurosci ; 42(20): 4087-4100, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35437280

RESUMEN

Nogo-66 receptors (NgR1-3) are glycosylphosphatidyl inositol-linked proteins that belong to the leucine-rich repeat superfamily. Through binding to myelin-associated inhibitors, NgRs contribute to the inhibition of axonal regeneration after spinal cord injury. Their role in limiting synaptic plasticity and axonal outgrowth in the adult CNS has been described previously, but not much is known about their role during the development of the nervous system. Here, we show that NgR1 and NgR3 mRNAs are expressed during spinal cord development of the chicken embryo. In particular, they are expressed in the dI1 subpopulation of commissural neurons during the time when their axons navigate toward and across the floorplate, the ventral midline of the spinal cord. To assess a potential role of NgR1 and NgR3 in axon guidance, we downregulated them using in ovo RNAi and analyzed the trajectory of commissural axons by tracing them in open-book preparations of spinal cords. Our results show that loss of either NgR1 or NgR3 causes axons to stall in the midline area and to interfere with the rostral turn of postcrossing axons. In addition, we also show that NgR1, but not NgR3, requires neuronal PlexinA2 for the regulation of commissural axon guidance.SIGNIFICANCE STATEMENT Over the last decades, many studies have focused on the role of NgRs, particularly NgR1, in axonal regeneration in the injured adult CNS. Here, we show a physiological role of NgRs in guiding commissural axons during early development of the chicken spinal cord in vivo Both NgR1 and NgR3 are required for midline crossing and subsequent turning of postcrossing axons into the longitudinal axis of the spinal cord. NgR1, but not NgR3, forms a receptor complex with PlexinA2 during axon guidance. Overall, these findings provide a link between neural regenerative mechanisms and developmental processes.


Asunto(s)
Orientación del Axón , Receptores de Superficie Celular , Animales , Axones/fisiología , Embrión de Pollo , Receptor Nogo 1/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Médula Espinal/metabolismo
4.
Nat Methods ; 16(11): 1105-1108, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31527839

RESUMEN

Light-sheet microscopy is an ideal technique for imaging large cleared samples; however, the community is still lacking instruments capable of producing volumetric images of centimeter-sized cleared samples with near-isotropic resolution within minutes. Here, we introduce the mesoscale selective plane-illumination microscopy initiative, an open-hardware project for building and operating a light-sheet microscope that addresses these challenges and is compatible with any type of cleared or expanded sample ( www.mesospim.org ).


Asunto(s)
Microscopía Fluorescente/instrumentación , Animales , Embrión de Pollo , Microscopía Fluorescente/métodos , Programas Informáticos
5.
Development ; 145(10)2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29759980

RESUMEN

During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such circuits results in disorders of the nervous system. Thus, understanding the molecular mechanisms that guide axons and lead to neural circuit formation is of interest not only to developmental neuroscientists but also for a better comprehension of neural disorders. Recent studies have demonstrated how crosstalk between different families of guidance receptors can regulate axonal navigation at choice points, and how changes in growth cone behaviour at intermediate targets require changes in the surface expression of receptors. These changes can be achieved by a variety of mechanisms, including transcription, translation, protein-protein interactions, and the specific trafficking of proteins and mRNAs. Here, I review these axon guidance mechanisms, highlighting the most recent advances in the field that challenge the textbook model of axon guidance.


Asunto(s)
Orientación del Axón/fisiología , Movimiento Celular/fisiología , Conos de Crecimiento/metabolismo , Neuronas/fisiología , Animales , Axones/metabolismo , Humanos , Ratones , Enfermedades del Sistema Nervioso/patología , Receptores de Netrina/metabolismo , Netrinas/metabolismo , Transporte de Proteínas , Transducción de Señal/fisiología
6.
Proc Biol Sci ; 288(1953): 20210392, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34130497

RESUMEN

Domestication provides an outstanding opportunity for biologists to explore the underpinnings of organismal diversification. In domesticated animals, selective breeding for exaggerated traits is expected to override genetic correlations that normally modulate phenotypic variation in nature. Whether this strong directional selection affects the sequence of tightly synchronized events by which organisms arise (ontogeny) is often overlooked. To address this concern, we compared the ontogeny of the red junglefowl (RJF) (Gallus gallus) to four conspecific lineages that underwent selection for traits of economic or ornamental value to humans. Trait differentiation sequences in embryos of these chicken breeds generally resembled the representative ancestral condition in the RJF, thus revealing that early ontogeny remains highly canalized even during evolution under domestication. This key finding substantiates that the genetic cost of domestication does not necessarily compromise early ontogenetic steps that ensure the production of viable offspring. Instead, disproportionate beak and limb growth (allometry) towards the end of ontogeny better explained phenotypes linked to intense selection for industrial-scale production over the last 100 years. Illuminating the spatial and temporal specificity of development is foundational to the enhancement of chicken breeds, as well as to ongoing research on the origins of phenotypic variation in wild avian species.


Asunto(s)
Pollos , Domesticación , Animales , Animales Domésticos , Pollos/genética , Humanos , Fenotipo
7.
PLoS Genet ; 14(6): e1007432, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29912942

RESUMEN

Axonal growth and guidance rely on correct growth cone responses to guidance cues. Unlike the signaling cascades that link axonal growth to cytoskeletal dynamics, little is known about the crosstalk mechanisms between guidance and membrane dynamics and turnover. Recent studies indicate that whereas axonal attraction requires exocytosis, chemorepulsion relies on endocytosis. Indeed, our own studies have shown that Netrin-1/Deleted in Colorectal Cancer (DCC) signaling triggers exocytosis through the SNARE Syntaxin-1 (STX1). However, limited in vivo evidence is available about the role of SNARE proteins in axonal guidance. To address this issue, here we systematically deleted SNARE genes in three species. We show that loss-of-function of STX1 results in pre- and post-commissural axonal guidance defects in the midline of fly, chick, and mouse embryos. Inactivation of VAMP2, Ti-VAMP, and SNAP25 led to additional abnormalities in axonal guidance. We also confirmed that STX1 loss-of-function results in reduced sensitivity of commissural axons to Slit-2 and Netrin-1. Finally, genetic interaction studies in Drosophila show that STX1 interacts with both the Netrin-1/DCC and Robo/Slit pathways. Our data provide evidence of an evolutionarily conserved role of STX1 and SNARE proteins in midline axonal guidance in vivo, by regulating both pre- and post-commissural guidance mechanisms.


Asunto(s)
Neurogénesis/genética , Sintaxina 1/genética , Sintaxina 1/fisiología , Animales , Axones/metabolismo , Quimiotaxis/genética , Embrión de Pollo , Drosophila/genética , Proteínas de Drosophila/genética , Exocitosis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Ratones , Ratones Noqueados , Factores de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/embriología , Netrina-1/genética , Netrina-1/metabolismo , Neurogénesis/fisiología , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/fisiología , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transducción de Señal/genética , Médula Espinal/embriología , Médula Espinal/metabolismo
8.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804711

RESUMEN

The primary cilium plays a pivotal role during the embryonic development of vertebrates. It acts as a somatic signaling hub for specific pathways, such as Sonic Hedgehog signaling. In humans, mutations in genes that cause dysregulation of ciliogenesis or ciliary function lead to severe developmental disorders called ciliopathies. Beyond its role in early morphogenesis, growing evidence points towards an essential function of the primary cilium in neural circuit formation in the central nervous system. However, very little is known about a potential role in the formation of the peripheral nervous system. Here, we investigate the presence of the primary cilium in neural crest cells and their derivatives in the trunk of developing chicken embryos in vivo. We found that neural crest cells, sensory neurons, and boundary cap cells all bear a primary cilium during key stages of early peripheral nervous system formation. Moreover, we describe differences in the ciliation of neuronal cultures of different populations from the peripheral and central nervous systems. Our results offer a framework for further in vivo and in vitro investigations on specific roles that the primary cilium might play during peripheral nervous system formation.


Asunto(s)
Cilios/fisiología , Sistema Nervioso Periférico/fisiología , Biomarcadores , Movimiento Celular , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Cresta Neural/metabolismo , Neuronas/metabolismo , Organogénesis/genética
9.
Dev Dyn ; 248(11): 1044-1058, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31433887

RESUMEN

The domestication of the fowl resulted in a large diversity of integumental structures in chicken breeds. Several integumental traits have been investigated from a developmental genetics perspective. However, their distribution among breeds and their developmental morphology remain unexplored. We constructed a discrete trait-breed matrix and conducted a disparity analysis to investigate the variation of these structures in chicken breeds; 20 integumental traits of 72 chicken breeds and the red junglefowl were assessed. The analyses resulted in slight groupings of breed types comparable to standard breed classification based on artificial selection and chicken type use. The red junglefowl groups together with bantams and European breeds. We provide new data on the red junglefowl and four chicken breeds, demonstrating where and when variation arises during embryonic development. We document variation in developmental timing of the egg tooth and feather formation, as well as other kinds of developmental patterning as in the anlagen of different type of combs. Changes in epithelial-mesenchymal signaling interactions may drive the highly diverse integument in chickens. Experimental and comparative work has revealed that the cranial neural crest mesenchyme mediates its interactions with the overlying epithelium and is the likely source of patterning that generates diversity in integumental structures.


Asunto(s)
Cruzamiento , Pollos/fisiología , Desarrollo Embrionario/fisiología , Fenotipo , Carácter Cuantitativo Heredable , Animales , Embrión de Pollo , Domesticación
10.
Development ; 143(6): 994-1004, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26839361

RESUMEN

Axon guidance at choice points depends on the precise regulation of guidance receptors on the growth cone surface. Upon arrival at the intermediate target or choice point, a switch from attraction to repulsion is required for the axon to move on. Dorsal commissural (dI1) axons crossing the ventral midline of the spinal cord in the floor plate represent a convenient model for the analysis of the molecular mechanism underlying the switch in axonal behavior. We identified in chick a role for calsyntenin 1 in the regulation of vesicular trafficking of guidance receptors in dI1 axons at choice points. In cooperation with RabGDI, calsyntenin 1 shuttles Rab11-positive vesicles containing Robo1 to the growth cone surface in a precisely regulated manner. By contrast, calsyntenin 1-mediated trafficking of frizzled 3, a guidance receptor in the Wnt pathway, is independent of RabGDI. Thus, tightly regulated insertion of guidance receptors, which is required for midline crossing and the subsequent turn into the longitudinal axis, is achieved by specific trafficking.


Asunto(s)
Axones/metabolismo , Proteínas de Unión al Calcio/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Proteínas Aviares/metabolismo , Células COS , Pollos , Chlorocebus aethiops , Silenciador del Gen , Conos de Crecimiento/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Fenotipo , Transporte de Proteínas
11.
Development ; 143(4): 589-94, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26884395

RESUMEN

Vascular endothelial growth factor (VEGF)-A is a well-known major chemoattractant driver of angiogenesis--the formation of new blood vessels from pre-existing ones. However, the repellent factors that fine-tune this angiogenic process remain poorly characterized. We investigated the expression and functional role of endothelial cell-derived semaphorin 3A (Sema3A) in retinal angiogenesis, using genetic mouse models. We found Sema3a mRNA expression in the ganglion cell layer and the presence of Sema3A protein on larger blood vessels and at the growing front of blood vessels in neonatal retinas. The Sema3A receptors neuropilin-1 and plexin-A1 were expressed by retinal blood vessels. To study the endothelial cell-specific role of Sema3A, we generated endothelial cell-specific Sema3A knockout mouse strains by constitutive or inducible vascular endothelial cadherin-Cre-mediated gene disruption. We found that in neonatal retinas of these mice, both the number and the length of tip cell filopodia were significantly increased and the leading edge growth pattern was irregular. Retinal explant experiments showed that recombinant Sema3A significantly decreased VEGF-A-induced filopodia formation. Endothelial cell-specific knockout of Sema3A had no impact on blood vessel density or skin vascular leakage in adult mice. These findings indicate that endothelial cell-derived Sema3A exerts repelling functions on VEGF-A-induced tip cell filopodia and that a lack of this signaling cannot be rescued by paracrine sources of Sema3A.


Asunto(s)
Vasos Sanguíneos/citología , Células Endoteliales/metabolismo , Semaforina-3A/metabolismo , Animales , Técnicas de Inactivación de Genes , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-1/metabolismo , Unión Proteica , Seudópodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/farmacología , Células Ganglionares de la Retina/metabolismo , Vasos Retinianos/metabolismo , Semaforina-3A/genética , Piel/irrigación sanguínea , Piel/efectos de los fármacos , Piel/patología
12.
Dev Biol ; 432(1): 43-52, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27965053

RESUMEN

Functional neural circuits depend on the establishment of specific connections between neurons and their target cells. To this end, many axons have to travel long distances to reach their target cells during development. Studies addressing the molecular mechanisms of axon guidance have to overcome the complexity of subpopulation-specific requirements with respect to pathways, guidance cues, and target recognition. Compared to the brain, the relatively simple structure of the spinal cord provides an advantage for experimental studies of axon guidance mechanisms. Therefore, the so far best understood model for axon guidance is the dI1 population of dorsal interneurons of the spinal cord. They extend their axons ventrally towards the floor plate. After midline crossing, they turn rostrally along the contralateral floor-plate border. Despite the fact that the trajectory of dI1 axons seems to be rather simple, the number of axon guidance molecules involved in the decisions taken by these axons is bewildering. Because guidance molecules and mechanisms are conserved throughout the developing nervous system, we can generalize what we have learned about the navigation of the floor plate as an intermediate target for commissural axons to the brain.


Asunto(s)
Orientación del Axón/fisiología , Axones/fisiología , Médula Espinal/fisiología , Animales , Humanos , Interneuronas/citología , Interneuronas/fisiología , Neuronas/citología , Neuronas/fisiología , Médula Espinal/citología
13.
Mol Cell Neurosci ; 81: 41-48, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27594578

RESUMEN

Many cell adhesion molecules are located at synapses but only few of them can be considered synaptic cell adhesion molecules in the strict sense. Besides the Neurexins and Neuroligins, the LRRTMs (leucine rich repeat transmembrane proteins) and the SynCAMs/CADMs can induce synapse formation when expressed in non-neuronal cells and therefore are true synaptic cell adhesion molecules. SynCAMs (synaptic cell adhesion molecules) are a subfamily of the immunoglobulin superfamily of cell adhesion molecules. As suggested by their name, they were first identified as cell adhesion molecules at the synapse which were sufficient to trigger synapse formation. They also contribute to myelination by mediating axon-glia cell contacts. More recently, their role in earlier stages of neural circuit formation was demonstrated, as they also guide axons both in the peripheral and in the central nervous system. Mutations in SynCAM genes were found in patients diagnosed with autism spectrum disorders. The diverse functions of SynCAMs during development suggest that neurodevelopmental disorders are not only due to defects in synaptic plasticity. Rather, early steps of neural circuit formation are likely to contribute.


Asunto(s)
Orientación del Axón , Moléculas de Adhesión Celular Neuronal/metabolismo , Inmunoglobulinas/metabolismo , Trastornos del Neurodesarrollo/genética , Animales , Moléculas de Adhesión Celular Neuronal/genética , Humanos , Inmunoglobulinas/genética , Mutación , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología
14.
Development ; 141(19): 3709-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25209245

RESUMEN

Semaphorins are a large family of axon guidance molecules that are known primarily as ligands for plexins and neuropilins. Although class-6 semaphorins are transmembrane proteins, they have been implicated as ligands in different aspects of neural development, including neural crest cell migration, axon guidance and cerebellar development. However, the specific spatial and temporal expression of semaphorin 6B (Sema6B) in chick commissural neurons suggested a receptor role in axon guidance at the spinal cord midline. Indeed, in the absence of Sema6B, post-crossing commissural axons lacked an instructive signal directing them rostrally along the contralateral floorplate border, resulting in stalling at the exit site or even caudal turns. Truncated Sema6B lacking the intracellular domain was unable to rescue the loss-of-function phenotype, confirming a receptor function of Sema6B. In support of this, we demonstrate that Sema6B binds to floorplate-derived plexin A2 (PlxnA2) for navigation at the midline, whereas a cis-interaction between PlxnA2 and Sema6B on pre-crossing commissural axons may regulate the responsiveness of axons to floorplate-derived cues.


Asunto(s)
Axones/fisiología , Movimiento Celular/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Semaforinas/metabolismo , Médula Espinal/citología , Médula Espinal/embriología , Análisis de Varianza , Animales , Axones/metabolismo , Embrión de Pollo , Inmunohistoquímica , Interferencia de ARN
15.
J Cell Sci ; 127(Pt 24): 5288-302, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25335893

RESUMEN

Synaptic cell adhesion molecules (SynCAMs) are crucial for synapse formation and plasticity. However, we have previously demonstrated that SynCAMs are also required during earlier stages of neural circuit formation because SynCAM1 and SynCAM2 (also known as CADM1 and CADM2, respectively) are important for the guidance of post-crossing commissural axons. In contrast to the exclusively homophilic cis-interactions reported by previous studies, our previous in vivo results suggested the existence of heterophilic cis-interactions between SynCAM1 and SynCAM2. Indeed, as we show here, the presence of homophilic and heterophilic cis-interactions modulates the interaction of SynCAMs with trans-binding partners, as observed previously for other immunoglobulin superfamily cell adhesion molecules. These in vitro findings are in agreement with results from in vivo studies, which demonstrate a role for SynCAMs in the formation of sensory neural circuits in the chicken embryo. In the absence of SynCAMs, selective axon-axon interactions are perturbed resulting in aberrant pathfinding of sensory axons.


Asunto(s)
Axones/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Receptoras Sensoriales/metabolismo , Sinapsis/metabolismo , Animales , Axones/ultraestructura , Adhesión Celular , Embrión de Pollo , Ganglios Espinales/citología , Ganglios Espinales/ultraestructura , Técnicas de Silenciamiento del Gen , Sustancia Gris/metabolismo , Conos de Crecimiento/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Neuritas/metabolismo , Neuronas Aferentes/metabolismo , Unión Proteica , Células Receptoras Sensoriales/ultraestructura , Médula Espinal/metabolismo
16.
Eur J Neurosci ; 39(11): 1752-60, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24628990

RESUMEN

Synaptic cell adhesion molecules are characterized by their potential to trigger synaptogenesis in vitro, even when expressed in non-neuronal cell lines. In addition to the prototypic synaptic cell adhesion molecules (SynCAMs), other structurally unrelated families of synaptic cell adhesion molecules have been identified: neurexins and neuroligins, as well as the leucine-rich repeat transmembrane neuronal protein family. Although in vivo the absence of individual synaptic cell adhesion molecules does not necessarily reduce the number of synapses, it does affect the function of synapses. Not surprisingly, mutations in synaptic cell adhesion molecules have been identified in patients suffering from neurodevelopmental disorders, such as autism spectrum disorders, intellectual disability or schizophrenia. In line with the major function of these genes at the synapse, their role in the pathogenesis of neurodevelopmental diseases has been attributed to synaptogenesis, synapse maintenance and synaptic plasticity. However, one family of synaptic cell adhesion molecules, the SynCAMs, have also been implicated in axon guidance, that is, an earlier step in neural circuit formation. These findings suggest that SynCAMs, and maybe other families of synaptic cell adhesion molecules as well, could contribute to the pathogenesis of neurodevelopmental disorders at multiple steps of neural circuit formation and, thus, shape the distinct symptoms associated with different disease variants or distinct neurodevelopmental disorders in addition to their effect on synaptic function. In this review, we summarize the roles of one family of synaptic cell adhesion molecules, the SynCAMs, at the synapse and beyond in axon guidance and myelination.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Trastornos Generalizados del Desarrollo Infantil/genética , Inmunoglobulinas/metabolismo , Enfermedades Neurodegenerativas/genética , Sinapsis/metabolismo , Animales , Axones/metabolismo , Axones/fisiología , Moléculas de Adhesión Celular/genética , Humanos , Inmunoglobulinas/genética , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neurogénesis , Sinapsis/fisiología
17.
Nat Biotechnol ; 42(1): 65-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36997681

RESUMEN

Imaging large, cleared samples requires microscope objectives that combine a large field of view (FOV) with a long working distance (WD) and a high numerical aperture (NA). Ideally, such objectives should be compatible with a wide range of immersion media, which is challenging to achieve with conventional lens-based objective designs. Here we introduce the multi-immersion 'Schmidt objective' consisting of a spherical mirror and an aspherical correction plate as a solution to this problem. We demonstrate that a multi-photon variant of the Schmidt objective is compatible with all homogeneous immersion media and achieves an NA of 1.08 at a refractive index of 1.56, 1.1-mm FOV and 11-mm WD. We highlight its versatility by imaging cleared samples in various media ranging from air and water to benzyl alcohol/benzyl benzoate, dibenzyl ether and ethyl cinnamate and by imaging of neuronal activity in larval zebrafish in vivo. In principle, the concept can be extended to any imaging modality, including wide-field, confocal and light-sheet microscopy.


Asunto(s)
Telescopios , Animales , Inmersión , Microscopía/métodos , Pez Cebra
18.
Nat Commun ; 15(1): 2679, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538644

RESUMEN

In 2015, we launched the mesoSPIM initiative, an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of such microscopes. Here, we introduce the next-generation mesoSPIM ("Benchtop") with a significantly increased field of view, improved resolution, higher throughput, more affordable cost, and simpler assembly compared to the original version. We develop an optical method for testing detection objectives that enables us to select objectives optimal for light-sheet imaging with large-sensor cameras. The improved mesoSPIM achieves high spatial resolution (1.5 µm laterally, 3.3 µm axially) across the entire field of view, magnification up to 20×, and supports sample sizes ranging from sub-mm up to several centimeters while being compatible with multiple clearing techniques. The microscope serves a broad range of applications in neuroscience, developmental biology, pathology, and even physics.


Asunto(s)
Microscopía , Neurociencias , Microscopía/métodos
19.
Development ; 137(3): 427-35, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20056680

RESUMEN

The Necl/SynCAM subgroup of immunoglobulin superfamily cell adhesion molecules has been implicated in late stages of neural circuit formation. They were shown to be sufficient for synaptogenesis by their trans-synaptic interactions. Additionally, they are involved in myelination, both in the central and the peripheral nervous system, by mediating adhesion between glia cells and axons. Here, we show that Necls/SynCAMs are also required for early stages of neural circuit formation. We demonstrate a role for Necls/SynCAMs in post-crossing commissural axon guidance in the developing spinal cord in vivo. Necl3/SynCAM2, the family member that has not been characterized functionally so far, plays a crucial role in this process. It is expressed by floorplate cells and interacts with Necls/SynCAMs expressed by commissural axons to mediate a turning response in post-crossing commissural axons.


Asunto(s)
Axones/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Animales , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Embrión de Pollo , Nectinas , Fibras Nerviosas Mielínicas , Neurogénesis , Médula Espinal/embriología , Médula Espinal/fisiología
20.
Development ; 137(15): 2539-50, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20573699

RESUMEN

Wiring of the nervous system is a multi-step process involving complex interactions of the growing fibre with its tissue environment and with neighbouring fibres. Nogo-A is a membrane protein enriched in the adult central nervous system (CNS) myelin, where it restricts the capacity of axons to grow and regenerate after injury. During development, Nogo-A is also expressed by neurons but its function in this cell type is poorly known. Here, we show that neutralization of neuronal Nogo-A or Nogo-A gene ablation (KO) leads to longer neurites, increased fasciculation, and decreased branching of cultured dorsal root ganglion neurons. The same effects are seen with antibodies against the Nogo receptor complex components NgR and Lingo1, or by blocking the downstream effector Rho kinase (ROCK). In the chicken embryo, in ovo injection of anti-Nogo-A antibodies leads to aberrant innervation of the hindlimb. Genetic ablation of Nogo-A causes increased fasciculation and reduced branching of peripheral nerves in Nogo-A KO mouse embryos. Thus, Nogo-A is a developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching.


Asunto(s)
Proteínas de la Mielina/metabolismo , Sistema Nervioso , Neuronas/metabolismo , Animales , Axones/metabolismo , Embrión de Pollo , Ganglios Espinales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Proteínas Nogo , Ratas , Ratas Wistar , Recombinación Genética , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA