Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cell ; 144(2): 227-39, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21215441

RESUMEN

Mitochondria import a large number of nuclear-encoded proteins via membrane-bound transport machineries; however, little is known about regulation of the preprotein translocases. We report that the main protein entry gate of mitochondria, the translocase of the outer membrane (TOM complex), is phosphorylated by cytosolic kinases-in particular, casein kinase 2 (CK2) and protein kinase A (PKA). CK2 promotes biogenesis of the TOM complex by phosphorylation of two key components, the receptor Tom22 and the import protein Mim1, which in turn are required for import of further Tom proteins. Inactivation of CK2 decreases the levels of the TOM complex and thus mitochondrial protein import. PKA phosphorylates Tom70 under nonrespiring conditions, thereby inhibiting its receptor activity and the import of mitochondrial metabolite carriers. We conclude that cytosolic kinases exert stimulatory and inhibitory effects on biogenesis and function of the TOM complex and thus regulate protein import into mitochondria.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citosol/enzimología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Fosforilación , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(36): e2308752120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639588

RESUMEN

The causative agent of human Q fever, Coxiella burnetii, is highly adapted to infect alveolar macrophages by inhibiting a range of host responses to infection. Despite the clinical and biological importance of this pathogen, the challenges related to genetic manipulation of both C. burnetii and macrophages have limited our knowledge of the mechanisms by which C. burnetii subverts macrophages functions. Here, we used the related bacterium Legionella pneumophila to perform a comprehensive screen of C. burnetii effectors that interfere with innate immune responses and host death using the greater wax moth Galleria mellonella and mouse bone marrow-derived macrophages. We identified MceF (Mitochondrial Coxiella effector protein F), a C. burnetii effector protein that localizes to mitochondria and contributes to host cell survival. MceF was shown to enhance mitochondrial function, delay membrane damage, and decrease mitochondrial ROS production induced by rotenone. Mechanistically, MceF recruits the host antioxidant protein Glutathione Peroxidase 4 (GPX4) to the mitochondria. The protective functions of MceF were absent in primary macrophages lacking GPX4, while overexpression of MceF in human cells protected against oxidative stress-induced cell death. C. burnetii lacking MceF was replication competent in mammalian cells but induced higher mortality in G. mellonella, indicating that MceF modulates the host response to infection. This study reveals an important C. burnetii strategy to subvert macrophage cell death and host immunity and demonstrates that modulation of the host antioxidant system is a viable strategy to promote the success of intracellular bacteria.


Asunto(s)
Antioxidantes , Coxiella , Humanos , Animales , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Estrés Oxidativo , Muerte Celular , Mamíferos
3.
EMBO Rep ; 24(8): e56430, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37272231

RESUMEN

Human Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined. Likewise, the necessity for human cells to encode two Tim8 proteins and whether any potential redundancy exists is unclear. We demonstrate that hTim8a and hTim8b function in the assembly of cytochrome c oxidase (Complex IV). Using affinity enrichment mass spectrometry, we define the interaction network of hTim8a, hTim8b and hTim13, identifying subunits and assembly factors of the Complex IV COX2 module. hTim8-deficient cells have a COX2 and COX3 module defect and exhibit an accumulation of the Complex IV S2 subcomplex. These data suggest that hTim8a and hTim8b function in assembly of Complex IV via interactions with intermediate-assembly subcomplexes. We propose that hTim8-hTim13 complexes are auxiliary assembly factors involved in the formation of the Complex IV S3 subcomplex during assembly of mature Complex IV.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Ciclooxigenasa 2/análisis , Ciclooxigenasa 2/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/metabolismo
4.
Mol Cell ; 67(3): 457-470.e5, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28712726

RESUMEN

Acylglycerol kinase (AGK) is a mitochondrial lipid kinase that catalyzes the phosphorylation of monoacylglycerol and diacylglycerol to lysophosphatidic acid and phosphatidic acid, respectively. Mutations in AGK cause Sengers syndrome, which is characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Here we identified AGK as a subunit of the mitochondrial TIM22 protein import complex. We show that AGK functions in a kinase-independent manner to maintain the integrity of the TIM22 complex, where it facilitates the import and assembly of mitochondrial carrier proteins. Mitochondria isolated from Sengers syndrome patient cells and tissues show a destabilized TIM22 complex and defects in the biogenesis of carrier substrates. Consistent with this phenotype, we observe perturbations in the tricarboxylic acid (TCA) cycle in cells lacking AGK. Our identification of AGK as a bona fide subunit of TIM22 provides an exciting and unexpected link between mitochondrial protein import and Sengers syndrome.


Asunto(s)
Cardiomiopatías/enzimología , Catarata/enzimología , Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Cardiomiopatías/genética , Catarata/genética , Ciclo del Ácido Cítrico , Predisposición Genética a la Enfermedad , Células HEK293 , Células HeLa , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Complejos Multiproteicos , Mutación , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Estabilidad Proteica , Transporte de Proteínas , Transfección
5.
Proc Natl Acad Sci U S A ; 119(13): e2115566119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35333655

RESUMEN

SignificanceMitochondria are double-membraned eukaryotic organelles that house the proteins required for generation of ATP, the energy currency of cells. ATP generation within mitochondria is performed by five multisubunit complexes (complexes I to V), the assembly of which is an intricate process. Mutations in subunits of these complexes, or the suite of proteins that help them assemble, lead to a severe multisystem condition called mitochondrial disease. We show that SFXN4, a protein that causes mitochondrial disease when mutated, assists with the assembly of complex I. This finding explains why mutations in SFXN4 cause mitochondrial disease and is surprising because SFXN4 belongs to a family of amino acid transporter proteins, suggesting that it has undergone a dramatic shift in function through evolution.


Asunto(s)
Complejo I de Transporte de Electrón , Enfermedades Mitocondriales , Adenosina Trifosfato/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Humanos , Proteínas de la Membrana , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación
6.
Clin Genet ; 106(3): 321-335, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38779778

RESUMEN

Premature ovarian insufficiency is a common form of female infertility affecting up to 4% of women and characterised by amenorrhea with elevated gonadotropin before the age of 40. Oocytes require controlled DNA breakage and repair for homologous recombination and the maintenance of oocyte integrity. Biallelic disruption of the DNA damage repair gene, Fanconi anemia complementation group A (FANCA), is a common cause of Fanconi anaemia, a syndrome characterised by bone marrow failure, cancer predisposition, physical anomalies and POI. There is ongoing dispute about the role of heterozygous FANCA variants in POI pathogenesis, with insufficient evidence supporting causation. Here, we have identified biallelic FANCA variants in French sisters presenting with POI, including a novel missense variant of uncertain significance and a likely pathogenic deletion that initially evaded detection. Functional studies indicated no discernible effect on DNA damage sensitivity in patient lymphoblasts. These novel FANCA variants add evidence that heterozygous loss of one allele is insufficient to cause DNA damage sensitivity and POI. We propose that intragenic deletions, that are relatively common in FANCA, may be missed without careful analysis, and could explain the presumed causation of heterozygous variants. Accurate variant curation is critical to optimise patient care and outcomes.


Asunto(s)
Alelos , Proteína del Grupo de Complementación A de la Anemia de Fanconi , Insuficiencia Ovárica Primaria , Humanos , Insuficiencia Ovárica Primaria/genética , Femenino , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Adulto , Anemia de Fanconi/genética , Anemia de Fanconi/diagnóstico , Hermanos , Heterocigoto , Predisposición Genética a la Enfermedad , Linaje , Mutación/genética
7.
J Cell Sci ; 134(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34313317

RESUMEN

The mitochondrial inner membrane is a protein-rich environment containing large multimeric complexes, including complexes of the mitochondrial electron transport chain, mitochondrial translocases and quality control machineries. Although the inner membrane is highly proteinaceous, with 40-60% of all mitochondrial proteins localised to this compartment, little is known about the spatial distribution and organisation of complexes in this environment. We set out to survey the arrangement of inner membrane complexes using stochastic optical reconstruction microscopy (STORM). We reveal that subunits of the TIM23 complex, TIM23 and TIM44 (also known as TIMM23 and TIMM44, respectively), and the complex IV subunit COXIV, form organised clusters and show properties distinct from the outer membrane protein TOM20 (also known as TOMM20). Density based cluster analysis indicated a bimodal distribution of TIM44 that is distinct from TIM23, suggesting distinct TIM23 subcomplexes. COXIV is arranged in larger clusters that are disrupted upon disruption of complex IV assembly. Thus, STORM super-resolution microscopy is a powerful tool for examining the nanoscale distribution of mitochondrial inner membrane complexes, providing a 'visual' approach for obtaining pivotal information on how mitochondrial complexes exist in a cellular context.


Asunto(s)
Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Animales , Células HEK293 , Células HeLa , Humanos , Microscopía , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transporte de Proteínas
8.
Cell ; 132(6): 1011-24, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-18358813

RESUMEN

Communication of mitochondria with the rest of the cell requires beta-barrel proteins of the outer membrane. All beta-barrel proteins are synthesized as precursors in the cytosol and imported into mitochondria by the general translocase TOM and the sorting machinery SAM. The SAM complex contains two proteins essential for cell viability, the channel-forming Sam50 and Sam35. We have identified the sorting signal of mitochondrial beta-barrel proteins that is universal in all eukaryotic kingdoms. The beta-signal initiates precursor insertion into a hydrophilic, proteinaceous membrane environment by forming a ternary complex with Sam35 and Sam50. Sam35 recognizes the beta-signal, inducing a major conductance increase of the Sam50 channel. Subsequent precursor release from SAM is coupled to integration into the lipid phase. We propose that a two-stage mechanism of signal-driven insertion into a membrane protein complex and subsequent integration into the lipid phase may represent a general mechanism for biogenesis of beta-barrel proteins.


Asunto(s)
Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales/química , Proteínas Mitocondriales/química , Señales de Clasificación de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Mol Cell Proteomics ; 20: 100005, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33177156

RESUMEN

Modulation of the host cell is integral to the survival and replication of microbial pathogens. Several intracellular bacterial pathogens deliver bacterial proteins, termed "effector proteins" into the host cell during infection by sophisticated protein translocation systems, which manipulate cellular processes and functions. The functional contribution of individual effectors is poorly characterized, particularly in intracellular bacterial pathogens with large effector protein repertoires. Technical caveats have limited the capacity to study these proteins during a native infection, with many effector proteins having only been demonstrated to be translocated during over-expression of tagged versions. Here, we developed a novel strategy to examine effector proteins in the context of infection. We coupled a broad, unbiased proteomics-based screen with organelle purification to study the host-pathogen interactions occurring between the host cell mitochondrion and the Gram-negative, Q fever pathogen Coxiella burnetii. We identify four novel mitochondrially-targeted C. burnetii effector proteins, renamed Mitochondrial Coxiella effector protein (Mce) B to E. Examination of the subcellular localization of ectopically expressed proteins confirmed their mitochondrial localization, demonstrating the robustness of our approach. Subsequent biochemical analysis and affinity enrichment proteomics of one of these effector proteins, MceC, revealed the protein localizes to the inner membrane and can interact with components of the mitochondrial quality control machinery. Our study adapts high-sensitivity proteomics to study intracellular host-pathogen interactions, providing a robust strategy to examine the subcellular localization of effector proteins during native infection. This approach could be applied to a range of pathogens and host cell compartments to provide a rich map of effector dynamics throughout infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coxiella burnetii/fisiología , Interacciones Huésped-Patógeno , Mitocondrias/metabolismo , Mitocondrias/microbiología , Células HEK293 , Células HeLa , Humanos , Proteoma , Proteómica , Fiebre Q , Células THP-1
10.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293464

RESUMEN

The lack of effective treatments for mitochondrial disease has seen the development of new approaches, including those that stimulate mitochondrial biogenesis to boost ATP production. Here, we examined the effects of deoxyribonucleosides (dNs) on mitochondrial biogenesis and function in Short chain enoyl-CoA hydratase 1 (ECHS1) 'knockout' (KO) cells, which exhibit combined defects in both oxidative phosphorylation (OXPHOS) and mitochondrial fatty acid ß-oxidation (FAO). DNs treatment increased mitochondrial DNA (mtDNA) copy number and the expression of mtDNA-encoded transcripts in both CONTROL (CON) and ECHS1 KO cells. DNs treatment also altered global nuclear gene expression, with key gene sets including 'respiratory electron transport' and 'formation of ATP by chemiosmotic coupling' increased in both CON and ECHS1 KO cells. Genes involved in OXPHOS complex I biogenesis were also upregulated in both CON and ECHS1 KO cells following dNs treatment, with a corresponding increase in the steady-state levels of holocomplex I in ECHS1 KO cells. Steady-state levels of OXPHOS complex V, and the CIII2/CIV and CI/CIII2/CIV supercomplexes, were also increased by dNs treatment in ECHS1 KO cells. Importantly, treatment with dNs increased both basal and maximal mitochondrial oxygen consumption in ECHS1 KO cells when metabolizing either glucose or the fatty acid palmitoyl-L-carnitine. These findings highlight the ability of dNs to improve overall mitochondrial respiratory function, via the stimulation mitochondrial biogenesis, in the face of combined defects in OXPHOS and FAO due to ECHS1 deficiency.


Asunto(s)
Enoil-CoA Hidratasa , Biogénesis de Organelos , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , ADN Mitocondrial/genética , Ácidos Grasos/metabolismo , Glucosa , Carnitina , Desoxirribonucleósidos , Adenosina Trifosfato
11.
Semin Cell Dev Biol ; 76: 142-153, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28765093

RESUMEN

Mitochondria are fundamental structures that fulfil important and diverse functions within cells, including cellular respiration and iron-sulfur cluster biogenesis. Mitochondrial function is reliant on the organelles proteome, which is maintained and adjusted depending on cellular requirements. The majority of mitochondrial proteins are encoded by nuclear genes and must be trafficked to, and imported into the organelle following synthesis in the cytosol. These nuclear-encoded mitochondrial precursors utilise dynamic and multimeric translocation machines to traverse the organelles membranes and be partitioned to the appropriate mitochondrial subcompartment. Yeast model systems have been instrumental in establishing the molecular basis of mitochondrial protein import machines and mechanisms, however unique players and mechanisms are apparent in higher eukaryotes. Here, we review our current knowledge on mitochondrial protein import in human cells and how dysfunction in these pathways can lead to disease.


Asunto(s)
Proteínas Mitocondriales/genética , Transporte de Proteínas/genética , Humanos
12.
Infect Immun ; 88(3)2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31818957

RESUMEN

Coxiella burnetii is an obligate intracellular bacterial pathogen that replicates inside the lysosome-derived Coxiella-containing vacuole (CCV). To establish this unique niche, C. burnetii requires the Dot/Icm type IV secretion system (T4SS) to translocate a cohort of effector proteins into the host cell, which modulate multiple cellular processes. To characterize the host-pathogen interactions that occur during C. burnetii infection, stable-isotope labeling by amino acids in cell culture (SILAC)-based proteomics was used to identify changes in the host proteome during infection of a human-derived macrophage cell line. These data revealed that the abundances of many proteins involved in host cell autophagy and lysosome biogenesis were increased in infected cells. Thus, the role of the host transcription factors TFEB and TFE3, which regulate the expression of a network of genes involved in autophagy and lysosomal biogenesis, were examined in the context of C. burnetii infection. During infection with C. burnetii, both TFEB and TFE3 were activated, as demonstrated by the transport of these proteins from the cytoplasm into the nucleus. The nuclear translocation of these transcription factors was shown to be dependent on the T4SS, as a Dot/Icm mutant showed reduced nuclear translocation of TFEB and TFE3. This was supported by the observation that blocking bacterial translation with chloramphenicol resulted in the movement of TFEB and TFE3 back into the cytoplasm. Silencing of the TFEB and TFE3 genes, alone or in combination, significantly reduced the size of the CCV, which indicates that these host transcription factors facilitate the expansion and maintenance of the organelle that supports C. burnetii intracellular replication.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Coxiella burnetii/fisiología , Interacciones Huésped-Patógeno/fisiología , Transporte Activo de Núcleo Celular/fisiología , Regulación de la Expresión Génica/fisiología , Humanos , Macrófagos/metabolismo , Proteoma/metabolismo
13.
EMBO J ; 33(6): 578-93, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550258

RESUMEN

The dynamic network of mitochondria fragments under stress allowing the segregation of damaged mitochondria and, in case of persistent damage, their selective removal by mitophagy. Mitochondrial fragmentation upon depolarisation of mitochondria is brought about by the degradation of central components of the mitochondrial fusion machinery. The OMA1 peptidase mediates the degradation of long isoforms of the dynamin-like GTPase OPA1 in the inner membrane. Here, we demonstrate that OMA1-mediated degradation of OPA1 is a general cellular stress response. OMA1 is constitutively active but displays strongly enhanced activity in response to various stress insults. We identify an amino terminal stress-sensor domain of OMA1, which is only present in homologues of higher eukaryotes and which modulates OMA1 proteolysis and activation. OMA1 activation is associated with its autocatalyic degradation, which initiates from both termini of OMA1 and results in complete OMA1 turnover. Autocatalytic proteolysis of OMA1 ensures the reversibility of the response and allows OPA1-mediated mitochondrial fusion to resume upon alleviation of stress. This differentiated stress response maintains the functional integrity of mitochondria and contributes to cell survival.


Asunto(s)
Activación Enzimática/fisiología , GTP Fosfohidrolasas/metabolismo , Metaloproteasas/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Estrés Fisiológico/fisiología , Animales , Centrifugación por Gradiente de Densidad , Electroforesis en Gel de Poliacrilamida , Fibroblastos , Immunoblotting , Metaloproteasas/genética , Ratones , Ratones Noqueados , Microscopía Fluorescente , Proteínas Mitocondriales/genética
14.
J Cell Sci ; 129(11): 2170-81, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27076521

RESUMEN

Cytosolic dynamin-related protein 1 (Drp1, also known as DNM1L) is required for both mitochondrial and peroxisomal fission. Drp1-dependent division of these organelles is facilitated by a number of adaptor proteins at mitochondrial and peroxisomal surfaces. To investigate the interplay of these adaptor proteins, we used gene-editing technology to create a suite of cell lines lacking the adaptors MiD49 (also known as MIEF2), MiD51 (also known as MIEF1), Mff and Fis1. Increased mitochondrial connectivity was observed following loss of individual adaptors, and this was further enhanced following the combined loss of MiD51 and Mff. Moreover, loss of adaptors also conferred increased resistance of cells to intrinsic apoptotic stimuli, with MiD49 and MiD51 showing the more prominent role. Using a proximity-based biotin labeling approach, we found close associations between MiD51, Mff and Drp1, but not Fis1. Furthermore, we found that MiD51 can suppress Mff-dependent enhancement of Drp1 GTPase activity. Our data indicates that Mff and MiD51 regulate Drp1 in specific ways to promote mitochondrial fission.


Asunto(s)
Dinaminas/metabolismo , Proteínas de la Membrana/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Muerte Celular , Línea Celular , Edición Génica , Ratones Endogámicos C57BL , Ratones Noqueados , Peroxisomas/metabolismo , Coloración y Etiquetado
15.
Biochem Soc Trans ; 46(5): 1225-1238, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30287509

RESUMEN

Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Osteocondrodisplasias/genética , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteoma/metabolismo
16.
Infect Immun ; 85(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28242621

RESUMEN

Coxiella burnetii, the causative agent of Q fever, establishes a unique lysosome-derived intracellular niche termed the Coxiella-containing vacuole (CCV). The Dot/Icm-type IVB secretion system is essential for the biogenesis of the CCV and the intracellular replication of Coxiella Effector proteins, translocated into the host cell through this apparatus, act to modulate host trafficking and signaling processes to facilitate CCV development. Here we investigated the role of CBU0077, a conserved Coxiella effector that had previously been observed to localize to lysosomal membranes. CBU0077 was dispensable for the intracellular replication of Coxiella in HeLa and THP-1 cells and did not appear to participate in CCV biogenesis. Intriguingly, native and epitope-tagged CBU0077 produced by Coxiella displayed specific punctate localization at host cell mitochondria. As such, we designated CBU0077 MceA (mitochondrial Coxiellaeffector protein A). Analysis of ectopically expressed MceA truncations revealed that the capacity to traffic to mitochondria is encoded within the first 84 amino acids of this protein. MceA is farnesylated by the host cell; however, this does not impact mitochondrial localization. Examination of mitochondria isolated from infected cells revealed that MceA is specifically integrated into the mitochondrial outer membrane and forms a complex of approximately 120 kDa. Engineering Coxiella to express either MceA tagged with 3×FLAG or MceA tagged with 2×hemagglutinin allowed us to perform immunoprecipitation experiments that showed that MceA forms a homo-oligomeric species at the mitochondrial outer membrane during infection. This research reveals that mitochondria are a bona fide target of Coxiella effectors and MceA is a complex-forming effector at the mitochondrial outer membrane during Coxiella infection.


Asunto(s)
Coxiella burnetii/crecimiento & desarrollo , Coxiella burnetii/metabolismo , Interacciones Huésped-Patógeno , Membranas Mitocondriales/metabolismo , Multimerización de Proteína , Fiebre Q/microbiología , Factores de Virulencia/metabolismo , Línea Celular , Células Epiteliales/microbiología , Humanos , Peso Molecular , Monocitos/microbiología , Factores de Virulencia/química
17.
Cell Tissue Res ; 367(1): 141-154, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27515462

RESUMEN

Manipulation of host cell function by bacterial pathogens is paramount for successful invasion and creation of a niche conducive to bacterial replication. Mitochondria play a role in many important cellular processes including energy production, cellular calcium homeostasis, lipid metabolism, haeme biosynthesis, immune signalling and apoptosis. The sophisticated integration of host cell processes by the mitochondrion have seen it emerge as a key target during bacterial infection of human host cells. This review highlights the targeting and interaction of this dynamic organelle by intravacuolar bacterial pathogens and the way that the modulation of mitochondrial function might contribute to pathogenesis.


Asunto(s)
Bacterias/metabolismo , Mitocondrias/metabolismo , Vacuolas/metabolismo , Vacuolas/microbiología , Animales , Bacterias/patogenicidad , Proteínas Bacterianas/metabolismo , Humanos , Inmunidad , Factores de Virulencia/metabolismo
18.
J Gen Virol ; 96(12): 3519-3524, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26404393

RESUMEN

Specific roles have been ascribed to each of the 12 known rotavirus proteins apart from the non-structural protein 6 (NSP6). However, NSP6 may be present at sites of viral replication within the cytoplasm. Here we report that NSP6 from diverse species of rotavirus A localizes to mitochondria via conserved sequences in a predicted N-terminal a-helix. This suggests that NSP6 may affect mitochondrial functions during rotavirus infection.


Asunto(s)
Mitocondrias/fisiología , Rotavirus/metabolismo , Proteínas no Estructurales Virales/fisiología , Animales , Línea Celular , Regulación Viral de la Expresión Génica/fisiología , Células HEK293 , Humanos , Transporte de Proteínas , Rotavirus/genética , Replicación Viral
19.
J Biol Chem ; 288(38): 27584-27593, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23921378

RESUMEN

Drp1 (dynamin-related protein 1) is recruited to both mitochondrial and peroxisomal membranes to execute fission. Fis1 and Mff are Drp1 receptor/effector proteins of mitochondria and peroxisomes. Recently, MiD49 and MiD51 were also shown to recruit Drp1 to the mitochondrial surface; however, different reports have ascribed opposing roles in fission and fusion. Here, we show that MiD49 or MiD51 overexpression blocked fission by acting in a dominant-negative manner by sequestering Drp1 specifically at mitochondria, causing unopposed fusion events at mitochondria along with elongation of peroxisomes. Mitochondrial elongation caused by MiD49/51 overexpression required the action of fusion mediators mitofusins 1 and 2. Furthermore, at low level overexpression when MiD49 and MiD51 form discrete foci at mitochondria, mitochondrial fission events still occurred. Unlike Fis1 and Mff, MiD49 and MiD51 were not targeted to the peroxisomal surface, suggesting that they specifically act to facilitate Drp1-directed fission at mitochondria. Moreover, when MiD49 or MiD51 was targeted to the surface of peroxisomes or lysosomes, Drp1 was specifically recruited to these organelles. Moreover, the Drp1 recruitment activity of MiD49/51 appeared stronger than that of Mff or Fis1. We conclude that MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and suggest that they provide specificity to the division of mitochondria.


Asunto(s)
Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Factores de Elongación de Péptidos/metabolismo , Animales , Dinaminas/genética , GTP Fosfohidrolasas/genética , Células HeLa , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Factores de Elongación de Péptidos/genética , Peroxisomas/genética , Peroxisomas/metabolismo
20.
Methods Enzymol ; 706: 365-390, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39455224

RESUMEN

Mitochondrial protein import is a complex process governing the delivery of the organelle's proteome. This process, in turn, is essential for maintaining mitochondrial function and cellular homeostasis. Initiated by protein synthesis in the cytoplasm, precursor proteins destined for the mitochondria possess targeting signals that guide them to the mitochondrial surface. At mitochondria, the translocation of proteins across the mitochondrial membranes involves an intricate interplay between translocases, chaperones, and receptors. The mitochondrial import assay offers researchers the opportunity to recapitulate the process of protein import in vitro. The assay has served as an indispensable tool in helping decipher the intricacies of protein translocation into mitochondria, first in fungal models, and subsequently in higher eukaryotic models. In this chapter, we will describe how protein import can be assayed using mammalian mitochondria and provide insight into the types of questions that can be addressed in mammalian mitochondrial biology using this experimental approach.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Transporte de Proteínas , Animales , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Humanos , Precursores de Proteínas/metabolismo , Membranas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA