Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(17): 3481-3495.e7, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34358446

RESUMEN

PRMT5 is an essential arginine methyltransferase and a therapeutic target in MTAP-null cancers. PRMT5 uses adaptor proteins for substrate recruitment through a previously undefined mechanism. Here, we identify an evolutionarily conserved peptide sequence shared among the three known substrate adaptors (CLNS1A, RIOK1, and COPR5) and show that it is necessary and sufficient for interaction with PRMT5. We demonstrate that PRMT5 uses modular adaptor proteins containing a common binding motif for substrate recruitment, comparable with other enzyme classes such as kinases and E3 ligases. We structurally resolve the interface with PRMT5 and show via genetic perturbation that it is required for methylation of adaptor-recruited substrates including the spliceosome, histones, and ribosomal complexes. Furthermore, disruption of this site affects Sm spliceosome activity, leading to intron retention. Genetic disruption of the PRMT5-substrate adaptor interface impairs growth of MTAP-null tumor cells and is thus a site for development of therapeutic inhibitors of PRMT5.


Asunto(s)
Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/fisiología , Animales , Línea Celular Tumoral , Citoplasma/metabolismo , Femenino , Células HCT116 , Células HEK293 , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales Iónicos/metabolismo , Masculino , Metilación , Ratones , Ratones Desnudos , Proteínas Nucleares/metabolismo , Péptidos/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Empalmosomas/metabolismo
2.
Blood ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39374535

RESUMEN

A robust prognostic and biological classification for newly diagnosed follicular lymphoma (FL) using molecular profiling remains challenging. FL tumors from patients treated in the RELEVANCE trial with rituximab-chemotherapy (R-chemo) or rituximab-lenalidomide (R2) were analyzed using RNA-sequencing, DNA-sequencing, immunohistochemistry (IHC) and/or fluorescence in situ hybridization. Unsupervised gene clustering identified two gene expression signatures (GS) enriched with normal memory (MEM) B-cells and germinal center (GC) B-cells signals, respectively. These two GS were combined into a 20-genes predictor (FL20) to classify patients into MEM-like (n=160) or GC-like (n=164) subtypes, which also displayed different mutational profiles. In the R-chemo arm, MEM-like patients had significantly shorter progression free survival (PFS) than GC-like patients (HR=2.13; p=0.0023), and this prognostic correlation remained significant in a multivariable model including FLIPI (p=0.005). In the R2 arm, both subtypes had comparable PFS, demonstrating a R2 benefit over R-chemo for MEM-like patients (HR=0.54; p=0.011). The prognostic value of FL20 was validated in an independent FL cohort with R-chemo treatment (GSE119214 (n=137)). An IHC algorithm (FLCM) using FOXP1, LMO2, CD22 and MUM1 antibodies was developed with significant prognostic correlation with FL20 in a training set of RELEVANCE (n=264) patients, which was then validated in a different set of patients (n=116). These data indicate that FL tumors can be classified into MEM-like and GC-like subtypes that are biologically distinct and clinically different in risk profile. The FLCM assay can be used in routine clinical practice to identify MEM-like FL patients who might benefit from therapies other than R-chemo, such as the R2 combination. ClinicalTrials.gov identifier: RELEVANCE: NCT01476787 and NCT01650701 INTRODUCTION.

3.
Nature ; 586(7829): 412-416, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33029011

RESUMEN

An important tenet of learning and memory is the notion of a molecular switch that promotes the formation of long-term memory1-4. The regulation of proteostasis is a critical and rate-limiting step in the consolidation of new memories5-10. One of the most effective and prevalent ways to enhance memory is by regulating the synthesis of proteins controlled by the translation initiation factor eIF211. Phosphorylation of the α-subunit of eIF2 (p-eIF2α), the central component of the integrated stress response (ISR), impairs long-term memory formation in rodents and birds11-13. By contrast, inhibiting the ISR by mutating the eIF2α phosphorylation site, genetically11 and pharmacologically inhibiting the ISR kinases14-17, or mimicking reduced p-eIF2α with the ISR inhibitor ISRIB11, enhances long-term memory in health and disease18. Here we used molecular genetics to dissect the neuronal circuits by which the ISR gates cognitive processing. We found that learning reduces eIF2α phosphorylation in hippocampal excitatory neurons and a subset of hippocampal inhibitory neurons (those that express somatostatin, but not parvalbumin). Moreover, ablation of p-eIF2α in either excitatory or somatostatin-expressing (but not parvalbumin-expressing) inhibitory neurons increased general mRNA translation, bolstered synaptic plasticity and enhanced long-term memory. Thus, eIF2α-dependent mRNA translation controls memory consolidation via autonomous mechanisms in excitatory and somatostatin-expressing inhibitory neurons.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Hipocampo/citología , Consolidación de la Memoria , Neuronas/metabolismo , Somatostatina/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Factor 2 Eucariótico de Iniciación/deficiencia , Factor 2 Eucariótico de Iniciación/genética , Potenciales Postsinápticos Excitadores , Hipocampo/fisiología , Potenciación a Largo Plazo , Masculino , Memoria a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Inhibición Neural , Plasticidad Neuronal , Parvalbúminas , Fosforilación , Células Piramidales/fisiología , Transmisión Sináptica
4.
Chembiochem ; 24(19): e202300141, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37088717

RESUMEN

Focal adhesion kinase (FAK) is an attractive drug target due to its overexpression in cancer. FAK functions as a non-receptor tyrosine kinase and scaffolding protein, coordinating several downstream signaling effectors and cellular processes. While drug discovery efforts have largely focused on targeting FAK kinase activity, FAK inhibitors have failed to show efficacy as single agents in clinical trials. Here, using structure-guided design, we report the development of a selective FAK inhibitor (BSJ-04-175) and degrader (BSJ-04-146) to evaluate the consequences and advantages of abolishing all FAK activity in cancer models. BSJ-04-146 achieves rapid and potent FAK degradation with high proteome-wide specificity in cancer cells and induces durable degradation in mice. Compared to kinase inhibition, targeted degradation of FAK exhibits pronounced improved activity on downstream signaling and cancer cell viability and migration. Together, BSJ-04-175 and BSJ-04-146 are valuable chemical tools to dissect the specific consequences of targeting FAK through small-molecule inhibition or degradation.


Asunto(s)
Neoplasias , Quimera Dirigida a la Proteólisis , Ratones , Animales , Proteína-Tirosina Quinasas de Adhesión Focal/química , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Neoplasias/tratamiento farmacológico , Transducción de Señal , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química
5.
PLoS Biol ; 18(11): e3000981, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33253182

RESUMEN

The metabolite acetyl-coenzyme A (acetyl-CoA) serves as an essential element for a wide range of cellular functions including adenosine triphosphate (ATP) production, lipid synthesis, and protein acetylation. Intracellular acetyl-CoA concentrations are associated with nutrient availability, but the mechanisms by which a cell responds to fluctuations in acetyl-CoA levels remain elusive. Here, we generate a cell system to selectively manipulate the nucleo-cytoplasmic levels of acetyl-CoA using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing and acetate supplementation of the culture media. Using this system and quantitative omics analyses, we demonstrate that acetyl-CoA depletion alters the integrity of the nucleolus, impairing ribosomal RNA synthesis and evoking the ribosomal protein-dependent activation of p53. This nucleolar remodeling appears to be mediated through the class IIa histone deacetylases (HDACs). Our findings highlight acetylation-mediated control of the nucleolus as an important hub linking acetyl-CoA fluctuations to cellular stress responses.


Asunto(s)
Acetilcoenzima A/biosíntesis , Nucléolo Celular/metabolismo , ATP Citrato (pro-S)-Liasa/deficiencia , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Acetatos/metabolismo , Acetilación , Línea Celular , Nucléolo Celular/ultraestructura , Expresión Génica , Técnicas de Inactivación de Genes , Células HCT116 , Histona Desacetilasas/metabolismo , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
6.
J Virol ; 93(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30996098

RESUMEN

Influenza A viruses (IAVs) quickly adapt to new environments and are well known to cross species barriers. To reveal a molecular basis for these phenomena, we compared the Ser/Thr and Tyr phosphoproteomes of murine lung epithelial cells early and late after infection with mouse-adapted SC35M virus or its nonadapted SC35 counterpart. With this analysis we identified a large set of upregulated Ser/Thr phosphorylations common to both viral genotypes, while Tyr phosphorylations showed little overlap. Most of the proteins undergoing massive changes of phosphorylation in response to both viruses regulate chromatin structure, RNA metabolism, and cell adhesion, including a focal adhesion kinase (FAK)-regulated network mediating the regulation of actin dynamics. IAV also affected phosphorylation of activation loops of 37 protein kinases, including FAK and several phosphatases, many of which were not previously implicated in influenza virus infection. Inhibition of FAK proved its contribution to IAV infection. Novel phosphorylation sites were found on IAV-encoded proteins, and the functional analysis of selected phosphorylation sites showed that they either support (NA Ser178) or inhibit (PB1 Thr223) virus propagation. Together, these data allow novel insights into IAV-triggered regulatory phosphorylation circuits and signaling networks.IMPORTANCE Infection with IAVs leads to the induction of complex signaling cascades, which apparently serve two opposing functions. On the one hand, the virus highjacks cellular signaling cascades in order to support its propagation; on the other hand, the host cell triggers antiviral signaling networks. Here we focused on IAV-triggered phosphorylation events in a systematic fashion by deep sequencing of the phosphoproteomes. This study revealed a plethora of newly phosphorylated proteins. We also identified 37 protein kinases and a range of phosphatases that are activated or inactivated following IAV infection. Moreover, we identified new phosphorylation sites on IAV-encoded proteins. Some of these phosphorylations support the enzymatic function of viral components, while other phosphorylations are inhibitory, as exemplified by PB1 Thr223 modification. Our global characterization of IAV-triggered patterns of phospho-proteins provides a rich resource to further understand host responses to infection at the level of phosphorylation-dependent signaling networks.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Proteoma/análisis , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Genoma , Interacciones Huésped-Patógeno/fisiología , Humanos , Virus de la Influenza A/genética , Ratones , Modelos Moleculares , Fosforilación , Conformación Proteica , Proteínas Virales/química , Proteínas Virales/metabolismo
7.
J Biol Chem ; 292(35): 14311-14324, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28655764

RESUMEN

The interconnected PI3K and MAPK signaling pathways are commonly perturbed in cancer. Dual inhibition of these pathways by the small-molecule PI3K inhibitor pictilisib (GDC-0941) and the MEK inhibitor cobimetinib (GDC-0973) suppresses cell proliferation and induces cell death better than either single agent in several preclinical models. Using mass spectrometry-based phosphoproteomics, we have identified the RING finger E3 ubiquitin ligase RNF157 as a target at the intersection of PI3K and MAPK signaling. We demonstrate that RNF157 phosphorylation downstream of the PI3K and MAPK pathways influences the ubiquitination and stability of RNF157 during the cell cycle in an anaphase-promoting complex/cyclosome-CDH1-dependent manner. Deletion of these phosphorylation-targeted residues on RNF157 disrupts binding to CDH1 and protects RNF157 from ubiquitination and degradation. Expression of the cyclin-dependent kinase 2 (CDK2), itself a downstream target of PI3K/MAPK signaling, leads to increased phosphorylation of RNF157 on the same residues modulated by PI3K and MAPK signaling. Inhibition of PI3K and MEK in combination or of CDK2 by their respective small-molecule inhibitors reduces RNF157 phosphorylation at these residues and attenuates RNF157 interaction with CDH1 and its subsequent degradation. Knockdown of endogenous RNF157 in melanoma cells leads to late S phase and G2/M arrest and induces apoptosis, the latter further potentiated by concurrent PI3K/MEK inhibition, consistent with a role for RNF157 in the cell cycle. We propose that RNF157 serves as a novel node integrating oncogenic signaling pathways with the cell cycle machinery and promoting optimal cell cycle progression in transformed cells.


Asunto(s)
Apoptosis , Sistema de Señalización de MAP Quinasas , Melanoma/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Sustitución de Aminoácidos , Antígenos CD , Apoptosis/efectos de los fármacos , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Mutación Puntual , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Fase S/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos
8.
Int J Hyperthermia ; 34(6): 812-823, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28954551

RESUMEN

PURPOSE: The aims of the present study were 2-fold: first, to test the hypothesis that heat stress induces MET and EGFR signalling in hepatocellular carcinoma (HCC) cells and inhibition of this signalling decreases HCC clonogenic survival; and second, to identify signalling pathways associated with heat stress induced MET signalling. MATERIALS AND METHODS: MET+ and EGFR+ HCC cells were pre-treated with inhibitors to MET, EGFR, PI3K/mTOR or vehicle and subjected to heat stress or control ± HGF or EGF growth factors and assessed by colony formation assay, Western blotting and/or quantitative mass spectrometry. IACUC approved partial laser thermal or sham ablation was performed on orthotopic N1S1 and AS30D HCC tumours and liver/tumour assessed for phospho-MET and phospho-EGFR immunostaining. RESULTS: Heat-stress induced rapid MET and EGFR phosphorylation that is distinct from HGF or EGF in HCC cells and thermal ablation induced MET but not EGFR phosphorylation at the HCC tumour ablation margin. Inhibition of the MET and EGFR blocked both heat stress and growth factor induced MET and EGFR phosphorylation and inhibition of MET decreased HCC clonogenic survival following heat stress. Pathway analysis of quantitative phosphoproteomic data identified downstream pathways associated with heat stress induced MET signalling including AKT, ERK, Stat3 and JNK. However, inhibition of heat stress induced MET signalling did not block AKT signalling. CONCLUSIONS: Heat-stress induced MET and EGFR signalling is distinct from growth factor mediated signalling in HCC cells and MET inhibition enhances heat stress induced HCC cell killing via a PI3K/AKT/mTOR-independent mechanism.


Asunto(s)
Carcinoma Hepatocelular/genética , Respuesta al Choque Térmico , Carcinoma Hepatocelular/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Transducción de Señal
9.
Mol Cell Proteomics ; 15(2): 692-702, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26635363

RESUMEN

A robust method was developed and optimized for enrichment and quantitative analysis of posttranslational modifications (PTMs) in serum/plasma samples by combining immunoaffinity purification and LC-MS/MS without depletion of abundant proteins. The method was used to survey serum samples of patients with acute myeloid leukemia (AML), breast cancer (BC), and nonsmall cell lung cancer (NSCLC). Peptides were identified from serum samples containing phosphorylation, acetylation, lysine methylation, and arginine methylation. Of the PTMs identified, lysine acetylation (AcK) and arginine mono-methylation (Rme) were more prevalent than other PTMs. Label-free quantitative analysis of AcK and Rme peptides was performed for sera from AML, BC, and NSCLC patients. Several AcK and Rme sites showed distinct abundance distribution patterns across the three cancer types. The identification and quantification of posttranslationally modified peptides in serum samples reported here can be used for patient profiling and biomarker discovery research.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/biosíntesis , Acetilación , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Cromatografía Liquida , Femenino , Humanos , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/patología , Metilación , Proteínas de Neoplasias/sangre , Procesamiento Proteico-Postraduccional/genética , Proteómica/métodos , Espectrometría de Masas en Tándem
10.
Proc Natl Acad Sci U S A ; 112(42): E5679-88, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26438848

RESUMEN

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells.


Asunto(s)
Transporte de Electrón , Peróxido de Hidrógeno/metabolismo , Membranas Mitocondriales/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Pollos , Activación Enzimática , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Quinasa Syk , Tirosina/metabolismo
11.
World J Surg ; 41(3): 650-659, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27738833

RESUMEN

BACKGROUND: Timely access to emergency and essential surgical care (EESC) and anaesthesia in low- and middle-income countries (LMICs) prevents premature death, minimises lifelong disability and reduces their economic impact on families and communities. Papua New Guinea is one of the poorest countries in the Pacific region, and provides much of its surgical care at a district hospital level. We aimed to evaluate the surgical capacity of a district hospital in PNG and estimate the effectiveness of surgical interventions provided. METHODS: We performed a prospective study to calculate the number of DALYs averted for 465 patients treated with surgical care over a 3-month period (Sep-Nov 2013) in Alotau Hospital, Milne Bay Province, PNG (pop 210,000). Data were also collected on infrastructure, workforce, interventions provided and equipment available using the World Health Organization's Integrated Management of Emergency and Essential Surgical Care Toolkit, a survey to assess EESC and surgical capacity. We also performed a retrospective one-year audit of surgical, obstetric and anaesthetic care to provide context with regards to annual disease burden treated and surgical activity. RESULTS: EESC was provided by 11 Surgeons/Anaesthetists/Obstetricians (SAO) providers, equating to 5.7 per 100,000 population (including 4 nurse anaesthetists). They performed 783/100,000 procedures annually. Over the 3-month prospective study period, 4954 DALYs were averted by 465 surgical interventions, 52 % of which were elective. This equates to 18,330 DALYs averted annually or, approximately 18 % of the published but estimated disease burden in the Province in the 2013 Global Burden of Disease Study. The overall peri-operative mortality rate was 1.29 %, with 0.41 % for elective procedures and 2.25 % for emergencies. CONCLUSIONS: Much of the burden of surgical disease in Papua New Guinea presenting to Alotau General Hospital serving Milne Bay Province can be effectively treated by a small team providing emergency and essential surgical care. This is despite a relatively low surgical volume and limited numbers of trained surgical anaesthesia obstetric providers, and likely underservicing. The ability of surgical care to avert disease in Papua New Guinea highlights its importance to public health in LMICs.


Asunto(s)
Procedimientos Quirúrgicos Electivos/estadística & datos numéricos , Urgencias Médicas/epidemiología , Accesibilidad a los Servicios de Salud , Procedimientos Quirúrgicos Operativos/estadística & datos numéricos , Adolescente , Adulto , Niño , Países en Desarrollo , Femenino , Fuerza Laboral en Salud , Hospitales de Distrito , Humanos , Masculino , Auditoría Médica , Persona de Mediana Edad , Papúa Nueva Guinea/epidemiología , Embarazo , Estudios Prospectivos , Estudios Retrospectivos , Adulto Joven
12.
Proteomics ; 16(14): 1992-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27282143

RESUMEN

The PI3K pathway is commonly activated in cancer. Only a few studies have attempted to explore the spectrum of phosphorylation signaling downstream of the PI3K cascade. Such insight, however, is imperative to understand the mechanisms responsible for oncogenic phenotypes. By applying MS-based phosphoproteomics, we mapped 2509 phosphorylation sites on 1096 proteins, and quantified their responses to activation or inhibition of PIK3CA using isogenic knock-in derivatives and a series of targeted inhibitors. We uncovered phosphorylation changes in a wide variety of proteins involved in cell growth and proliferation, many of which have not been previously associated with PI3K signaling. A significant update of the posttranslational modification database PHOSIDA (http://www.phosida.com) allows efficient use of the data. All MS data have been deposited in the ProteomeXchange with identifier PXD003899 (http://proteomecentral.proteomexchange.org/dataset/PXD003899).


Asunto(s)
Transformación Celular Neoplásica/genética , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfoproteínas/genética , Procesamiento Proteico-Postraduccional , Antineoplásicos/farmacología , Línea Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Fosfatidilinositol 3-Quinasa Clase I , Colon/citología , Colon/efectos de los fármacos , Colon/metabolismo , Bases de Datos Genéticas , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Humanos , Internet , Mutación , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Transducción de Señal , Programas Informáticos
13.
Proteomics ; 16(14): 1998-2004, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27273156

RESUMEN

The RAS-RAF-MEK-ERK (MAPK) pathway is prevalently perturbed in cancer. Recent large-scale sequencing initiatives profiled thousands of tumors providing insight into alterations at the DNA and RNA levels. These efforts confirmed that key nodes of the MAPK pathway, in particular KRAS and BRAF, are among the most frequently altered proteins in cancer. The establishment of targeted therapies, however, has proven difficult. To decipher the underlying challenges, it is essential to decrypt the phosphorylation network spanned by the MAPK core axis. Using mass spectrometry we identified 2241 phosphorylation sites on 1020 proteins, and measured their responses to inhibition of MEK or ERK. Multiple phosphorylation patterns revealed previously undetected feedback, as upstream signaling nodes, including receptor kinases, showed changes at the phosphorylation level. We provide a dataset rich in potential therapeutic targets downstream of the MAPK cascade. By integrating TCGA (The Cancer Genome Atlas) data, we highlight some downstream phosphoproteins that are frequently altered in cancer. All MS data have been deposited in the ProteomeXchange with identifier PXD003908 (http://proteomecentral.proteomexchange.org/dataset/PXD003908).


Asunto(s)
Neoplasias del Colon/genética , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas de Neoplasias/genética , Fosfoproteínas/genética , Secuencia de Aminoácidos , Antineoplásicos/farmacología , Atlas como Asunto , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Perfilación de la Expresión Génica , Células HCT116 , Humanos , Internet , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Programas Informáticos
14.
PLoS Comput Biol ; 11(4): e1004130, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25884760

RESUMEN

Protein phosphorylation plays a central role in creating a highly dynamic network of interacting proteins that reads and responds to signals from growth factors in the cellular microenvironment. Cells of the neural crest employ multiple signaling mechanisms to control migration and differentiation during development. It is known that defects in these mechanisms cause neuroblastoma, but how multiple signaling pathways interact to govern cell behavior is unknown. In a phosphoproteomic study of neuroblastoma cell lines and cell fractions, including endosomes and detergent-resistant membranes, 1622 phosphorylated proteins were detected, including more than half of the receptor tyrosine kinases in the human genome. Data were analyzed using a combination of graph theory and pattern recognition techniques that resolve data structure into networks that incorporate statistical relationships and protein-protein interaction data. Clusters of proteins in these networks are indicative of functional signaling pathways. The analysis indicates that receptor tyrosine kinases are functionally compartmentalized into distinct collaborative groups distinguished by activation and intracellular localization of SRC-family kinases, especially FYN and LYN. Changes in intracellular localization of activated FYN and LYN were observed in response to stimulation of the receptor tyrosine kinases, ALK and KIT. The results suggest a mechanism to distinguish signaling responses to activation of different receptors, or combinations of receptors, that govern the behavior of the neural crest, which gives rise to neuroblastoma.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Endosomas/metabolismo , Neuroblastoma/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo , Línea Celular Tumoral , Simulación por Computador , Humanos , Microdominios de Membrana , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo
15.
Mol Cell Proteomics ; 12(11): 3350-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23882029

RESUMEN

In the past decade, mass-spectrometry-based methods have emerged for the quantitative profiling of dynamic changes in protein phosphorylation, allowing the behavior of thousands of phosphorylation sites to be monitored in a single experiment. However, when one is interested in specific signaling pathways, such shotgun methodologies are not ideal because they lack selectivity and are not cost and time efficient with respect to instrument and data analysis time. Here we evaluate and explore a peptide-centric antibody generated to selectively enrich peptides containing the cAMP-dependent protein kinase (PKA) consensus motif. This targeted phosphoproteomic strategy is used to profile temporal quantitative changes of potential PKA substrates in Jurkat T lymphocytes upon prostaglandin E2 (PGE2) stimulation, which increases intracellular cAMP, activating PKA. Our method combines ultra-high-specificity motif-based immunoaffinity purification with cost-efficient stable isotope dimethyl labeling. We identified 655 phosphopeptides, of which 642 (i.e. 98%) contained the consensus motif [R/K][R/K/X]X[pS/pT]. When our data were compared with a large-scale Jurkat T-lymphocyte phosphoproteomics dataset containing more than 10,500 phosphosites, a minimal overlap of 0.2% was observed. This stresses the need for such targeted analyses when the interest is in a particular kinase. Our data provide a resource of likely substrates of PKA, and potentially some substrates of closely related kinases. Network analysis revealed that about half of the observed substrates have been implicated in cAMP-induced signaling. Still, the other half of the here-identified substrates have been less well characterized, representing a valuable resource for future research.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfoproteínas/metabolismo , Proteómica/métodos , Secuencias de Aminoácidos , Cromatografía Liquida/métodos , Dinoprostona/metabolismo , Dinoprostona/farmacología , Humanos , Inmunoprecipitación/métodos , Células Jurkat , Fosfoproteínas/química , Fosfoproteínas/genética , Mapas de Interacción de Proteínas , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato , Espectrometría de Masas en Tándem/métodos
16.
Mol Cell Proteomics ; 12(8): 2070-80, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23608596

RESUMEN

Although K-Ras, Cdc42, and PAK4 signaling are commonly deregulated in cancer, only a few studies have sought to comprehensively examine the spectrum of phosphorylation-mediated signaling downstream of each of these key signaling nodes. In this study, we completed a label-free quantitative analysis of oncogenic K-Ras, activated Cdc42, and PAK4-mediated phosphorylation signaling, and report relative quantitation of 2152 phosphorylated peptides on 1062 proteins. We define the overlap in phosphopeptides regulated by K-Ras, Cdc42, and PAK4, and find that perturbation of these signaling components affects phosphoproteins associated with microtubule depolymerization, cytoskeletal organization, and the cell cycle. These findings provide a resource for future studies to characterize novel targets of oncogenic K-Ras signaling and validate biomarkers of PAK4 inhibition.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/metabolismo , Animales , Ratones , Células 3T3 NIH , Fosfopéptidos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteómica , Transducción de Señal , Quinasas p21 Activadas/genética
17.
Biochem J ; 463(2): 249-56, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25074286

RESUMEN

PIGF is a protein involved in the ethanolamine phosphate (EtNP) transfer steps of glycosylphosphatidylinositol (GPI) biosynthesis. PIGF forms a heterodimer with either PIGG or PIGO, two enzymes that transfer an EtNP to the second or third mannoses of GPI respectively. Heterodimer formation is essential for stable and regulated expression of PIGO and PIGG, but the functional significance of PIGF remains obscure. In the present study, we show that PIGF binds to PIGO and PIGG through distinct molecular domains. Strikingly, C-terminal half of PIGF was sufficient for its binding to PIGO and PIGG and yet this truncation mutant could not complement the PIGF defective mutant cells, suggesting that heterodimer formation is not sufficient for PIGF function. Furthermore, we identified a highly conserved motif in PIGF and demonstrated that the motif is not involved in binding to PIGO or PIGG, but critical for its function. Finally, we identified a PIGF homologue from Trypanosoma brucei and showed that it binds specifically to the T. brucei PIGO homologue. These data together support the notion that PIGF plays a critical and evolutionary conserved role in the ethanolamine-phosphate transfer-step, which cannot be explained by its previously ascribed binding/stabilizing function. Potential roles of PIGF in GPI biosynthesis are discussed.


Asunto(s)
Etanolaminas/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Proteínas de la Membrana/metabolismo , Animales , Línea Celular , Etanolaminofosfotransferasa/genética , Etanolaminofosfotransferasa/metabolismo , Evolución Molecular , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Unión Proteica , Estructura Terciaria de Proteína , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
18.
BMC Genomics ; 15: 282, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24731236

RESUMEN

BACKGROUND: Ranking and identifying biomarkers that are associated with disease from genome-wide measurements holds significant promise for understanding the genetic basis of common diseases. The large number of single nucleotide polymorphisms (SNPs) in genome-wide studies (GWAS), however, makes this task computationally challenging when the ranking is to be done in a multivariate fashion. This paper evaluates the performance of a multivariate graph-based method called label propagation (LP) that efficiently ranks SNPs in genome-wide data. RESULTS: The performance of LP was evaluated on a synthetic dataset and two late onset Alzheimer's disease (LOAD) genome-wide datasets, and the performance was compared to that of three control methods. The control methods included chi squared, which is a commonly used univariate method, as well as a Relief method called SWRF and a sparse logistic regression (SLR) method, which are both multivariate ranking methods. Performance was measured by evaluating the top-ranked SNPs in terms of classification performance, reproducibility between the two datasets, and prior evidence of being associated with LOAD.On the synthetic data LP performed comparably to the control methods. On GWAS data, LP performed significantly better than chi squared and SWRF in classification performance in the range from 10 to 1000 top-ranked SNPs for both datasets, and not significantly different from SLR. LP also had greater ranking reproducibility than chi squared, SWRF, and SLR. Among the 25 top-ranked SNPs that were identified by LP, there were 14 SNPs in one dataset that had evidence in the literature of being associated with LOAD, and 10 SNPs in the other, which was higher than for the other methods. CONCLUSION: LP performed considerably better in ranking SNPs in two high-dimensional genome-wide datasets when compared to three control methods. It had better performance in the evaluation measures we used, and is computationally efficient to be applied practically to data from genome-wide studies. These results provide support for including LP in the methods that are used to rank SNPs in genome-wide datasets.


Asunto(s)
Enfermedad de Alzheimer/genética , Biomarcadores/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
19.
Mol Cell Proteomics ; 11(5): 187-201, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22322096

RESUMEN

Proteomic studies of post-translational modifications by metal affinity or antibody-based methods often employ data-dependent analysis, providing rich data sets that consist of randomly sampled identified peptides because of the dynamic response of the mass spectrometer. This can complicate the primary goal of programs for drug development, mutational analysis, and kinase profiling studies, which is to monitor how multiple nodes of known, critical signaling pathways are affected by a variety of treatment conditions. Cell Signaling Technology has developed an immunoaffinity-based LC-MS/MS method called PTMScan Direct for multiplexed analysis of these important signaling proteins. PTMScan Direct enables the identification and quantification of hundreds of peptides derived from specific proteins in signaling pathways or specific protein types. Cell lines, tissues, or xenografts can be used as starting material. PTMScan Direct is compatible with both SILAC and label-free quantification. Current PTMScan Direct reagents target key nodes of many signaling pathways (PTMScan Direct: Multipathway), serine/threonine kinases, tyrosine kinases, and the Akt/PI3K pathway. Validation of each reagent includes score filtering of MS/MS assignments, filtering by identification of peptides derived from expected targets, identification of peptides homologous to expected targets, minimum signal intensity of peptide ions, and dependence upon the presence of the reagent itself compared with a negative control. The Multipathway reagent was used to study sensitivity of human cancer cell lines to receptor tyrosine kinase inhibitors and showed consistent results with previously published studies. The Ser/Thr kinase reagent was used to compare relative levels of kinase-derived phosphopeptides in mouse liver, brain, and embryo, showing tissue-specific activity of many kinases including Akt and PKC family members. PTMScan Direct will be a powerful quantitative method for elucidation of changes in signaling in a wide array of experimental systems, combining the specificity of traditional biochemical methods with the high number of data points and dynamic range of proteomic methods.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Fragmentos de Péptidos/química , Procesamiento Proteico-Postraduccional , Animales , Encéfalo/metabolismo , Línea Celular , Cromatografía de Afinidad , Cromatografía Liquida , Embrión de Mamíferos/metabolismo , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/aislamiento & purificación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos BALB C , Fragmentos de Péptidos/aislamiento & purificación , Mapeo Peptídico/métodos , Fosfoproteínas/química , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo , Fosforilación , Mapas de Interacción de Proteínas , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/aislamiento & purificación , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem
20.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979143

RESUMEN

Osteocytes are the primary mechano-sensitive cell type in bone. Mechanical loading is sensed across the dendritic projections of osteocytes leading to transient reductions in focal adhesion kinase (FAK) activity. Knowledge regarding the signaling pathways downstream of FAK in osteocytes is incomplete. We performed tyrosine-focused phospho-proteomic profiling in osteocyte-like Ocy454 cells to identify FAK substrates. Gsα, parathyroid hormone receptor (PTH1R), and phosphodiesterase 8A (PDE8A), all proteins associated with cAMP signaling, were found as potential FAK targets based on their reduced tyrosine phosphorylation in both FAK- deficient or FAK inhibitor treated cells. Real time monitoring of intracellular cAMP levels revealed that FAK pharmacologic inhibition or gene deletion increased basal and GPCR ligand-stimulated cAMP levels and downstream phosphorylation of protein kinase A substrates. Mutating FAK phospho-acceptor sites in Gsα and PTH1R had no effect on PTH- or FAK inhibitor-stimulated cAMP levels. Since FAK inhibitor treatment augmented cAMP levels even in the presence of forskolin, we focused on potential FAK substrates downstream of cAMP generation. Indeed, PDE8A inhibition mimicked FAK inhibition at the level of increased cAMP, PKA activity, and expression of cAMP-regulated target genes. In vitro kinase assay showed that PDE8A is directly phosphorylated by FAK while immunoprecipitation assays revealed intracellular association between FAK and PDE8A. Thus, FAK inhibition in osteocytes acts synergistically with signals that activate adenylate cyclase to increase intracellular cAMP. Mechanically-regulated FAK can modulate intracellular cAMP levels via effects on PDE8A. These data suggest a novel signal transduction mechanism that mediates crosstalk between mechanical and cAMP-linked hormonal signaling in osteocytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA