Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 611(7935): 365-373, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323783

RESUMEN

Cells respond to physical stimuli, such as stiffness1, fluid shear stress2 and hydraulic pressure3,4. Extracellular fluid viscosity is a key physical cue that varies under physiological and pathological conditions, such as cancer5. However, its influence on cancer biology and the mechanism by which cells sense and respond to changes in viscosity are unknown. Here we demonstrate that elevated viscosity counterintuitively increases the motility of various cell types on two-dimensional surfaces and in confinement, and increases cell dissemination from three-dimensional tumour spheroids. Increased mechanical loading imposed by elevated viscosity induces an actin-related protein 2/3 (ARP2/3)-complex-dependent dense actin network, which enhances Na+/H+ exchanger 1 (NHE1) polarization through its actin-binding partner ezrin. NHE1 promotes cell swelling and increased membrane tension, which, in turn, activates transient receptor potential cation vanilloid 4 (TRPV4) and mediates calcium influx, leading to increased RHOA-dependent cell contractility. The coordinated action of actin remodelling/dynamics, NHE1-mediated swelling and RHOA-based contractility facilitates enhanced motility at elevated viscosities. Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4-dependent mechanical memory through transcriptional control of the Hippo pathway, leading to increased migration in zebrafish, extravasation in chick embryos and lung colonization in mice. Cumulatively, extracellular viscosity is a physical cue that regulates both short- and long-term cellular processes with pathophysiological relevance to cancer biology.


Asunto(s)
Movimiento Celular , Líquido Extracelular , Metástasis de la Neoplasia , Neoplasias , Viscosidad , Animales , Embrión de Pollo , Ratones , Actinas/metabolismo , Líquido Extracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Canales Catiónicos TRPV , Pez Cebra/metabolismo , Metástasis de la Neoplasia/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Vía de Señalización Hippo , Esferoides Celulares/patología , Complejo 2-3 Proteico Relacionado con la Actina , Proteína de Unión al GTP rhoA , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Pulmón/patología
2.
J Cell Sci ; 136(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36621522

RESUMEN

Wnt signalling has been implicated as a driver of tumour cell metastasis, but less is known about which branches of Wnt signalling are involved and when they act in the metastatic cascade. Here, using a unique intravital imaging platform and fluorescent reporters, we visualised ß-catenin/TCF-dependent and ATF2-dependent signalling activities during human cancer cell invasion, intravasation and metastatic lesion formation in the chick embryo host. We found that cancer cells readily shifted between states of low and high canonical Wnt activity. Cancer cells that displayed low Wnt canonical activity showed higher invasion and intravasation potential in primary tumours and in metastatic lesions. In contrast, cancer cells showing low ATF2-dependent activity were significantly less invasive both at the front of primary tumours and in metastatic lesions. Simultaneous visualisation of both these reporters using a double-reporter cell line confirmed their complementary activities in primary tumours and metastatic lesions. These findings might inform the development of therapies that target different branches of Wnt signalling at specific stages of metastasis.


Asunto(s)
Neoplasias , beta Catenina , Animales , Embrión de Pollo , Humanos , beta Catenina/metabolismo , Vía de Señalización Wnt , Neoplasias/genética , Línea Celular Tumoral , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo
3.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34948058

RESUMEN

Prostate cancer is a leading cause of cancer-associated deaths in men over 60 years of age. Most patients are killed by tumor metastasis. Recent evidence has implicated a role of the tumor microenvironment and urokinase plasminogen activator (uPA) in cancer cell migration, invasion, and metastasis. Here, we examine the role of the Na+/H+ exchanger isoform 1 (NHE1) and uPA in DU 145 prostate cancer cell migration and colony formation. Knockout of NHE1 reduced cell migration. The effects of a series of novel NHE1/uPA hexamethylene-amiloride-based inhibitors with varying efficacy towards NHE1 and uPA were examined on prostate cancer cells. Inhibition of NHE1-alone, or with inhibitors combining NHE1 or uPA inhibition-generally did not prevent prostate cancer cell migration. However, uPA inhibition-but not NHE1 inhibition-prevented anchorage-dependent colony formation. Application of inhibitors at concentrations that only saturate uPA inhibition decreased tumor invasion in vivo. The results suggest that while knockout of NHE1 affects cell migration, these effects are not due to NHE1-dependent proton translocation. Additionally, while neither NHE1 nor uPA activity was critical in cell migration, only uPA activity appeared to be critical in anchorage-dependent colony formation of DU 145 prostate cancer cells and invasion in vivo.


Asunto(s)
Proteínas de la Membrana/metabolismo , Neoplasias de la Próstata/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/genética , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Masculino , Neoplasias de la Próstata/genética , Microambiente Tumoral , Regulación hacia Arriba
4.
J Biol Chem ; 289(35): 24238-49, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25006253

RESUMEN

It is well established that widely expressed PTK7 is essential for vertebrate tissue morphogenesis. In cancer, the functionality of PTK7 is selectively regulated by membrane type-1 matrix metalloproteinase (MT1-MMP), ADAMs (a disintegrin domain and metalloproteinases), and γ-secretase proteolysis. Here, we established that the full-length membrane PTK7, its Chuzhoi mutant with the two functional MT1-MMP cleavage sites, and its L622D mutant with the single inactivated MT1-MMP cleavage site differentially regulate cell motility in a two-dimensional versus three-dimensional environment. We also demonstrated that in polarized cancer cells, the levels of PTK7 expression and proteolysis were directly linked to the structure and kinetics of cell protrusions, including lamellipodia and invadopodia. In the functionally relevant and widely accepted animal models of metastasis, mouse and chick embryo models, both the overexpression and knock-out of PTK7 in HT1080 cells abrogated metastatic dissemination. Our analysis of human tissue specimens confirmed intensive proteolysis of PTK7 in colorectal cancer tumors, but not in matching normal tissue. Our results provide convincing evidence that both PTK7 expression and proteolysis, rather than the level of the cellular full-length PTK7 alone, contribute to efficient directional cell motility and metastasis in cancer.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Fibrosarcoma/patología , Metástasis de la Neoplasia , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Línea Celular Tumoral , Embrión de Pollo , Fibrosarcoma/enzimología , Humanos , Metaloproteinasa 14 de la Matriz/metabolismo , Proteolisis
5.
J Cell Sci ; 126(Pt 4): 904-13, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23321642

RESUMEN

Breast cancer and melanoma cells commonly metastasize to the brain using homing mechanisms that are poorly understood. Cancer patients with brain metastases display poor prognosis and survival due to the lack of effective therapeutics and treatment strategies. Recent work using intravital microscopy and preclinical animal models indicates that metastatic cells colonize the brain, specifically in close contact with the existing brain vasculature. However, it is not known how contact with the vascular niche promotes microtumor formation. Here, we investigate the role of connexins in mediating early events in brain colonization using transparent zebrafish and chicken embryo models of brain metastasis. We provide evidence that breast cancer and melanoma cells utilize connexin gap junction proteins (Cx43, Cx26) to initiate brain metastatic lesion formation in association with the vasculature. RNAi depletion of connexins or pharmacological blocking of connexin-mediated cell-cell communication with carbenoxolone inhibited brain colonization by blocking tumor cell extravasation and blood vessel co-option. Activation of the metastatic gene twist in breast cancer cells increased Cx43 protein expression and gap junction communication, leading to increased extravasation, blood vessel co-option and brain colonization. Conversely, inhibiting twist activity reduced Cx43-mediated gap junction coupling and brain colonization. Database analyses of patient histories revealed increased expression of Cx26 and Cx43 in primary melanoma and breast cancer tumors, respectively, which correlated with increased cancer recurrence and metastasis. Together, our data indicate that Cx43 and Cx26 mediate cancer cell metastasis to the brain and suggest that connexins might be exploited therapeutically to benefit cancer patients with metastatic disease.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/metabolismo , Conexinas/metabolismo , Melanoma/complicaciones , Melanoma/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias de la Mama/genética , Embrión de Pollo , Conexina 26 , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Femenino , Humanos , Melanoma/genética , Ratones , Ratones Desnudos , Metástasis de la Neoplasia/genética , Interferencia de ARN
6.
Res Sq ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38260442

RESUMEN

Cells migrating in confinement experience mechanical challenges whose consequences on cell migration machinery remain only partially understood. Here, we demonstrate that a pool of the cytokinesis regulatory protein anillin is retained during interphase in the cytoplasm of different cell types. Confinement induces recruitment of cytoplasmic anillin to plasma membrane at the poles of migrating cells, which is further enhanced upon nuclear envelope (NE) rupture(s). Rupture events also enable the cytoplasmic egress of predominantly nuclear RhoGEF Ect2. Anillin and Ect2 redistributions scale with microenvironmental stiffness and confinement, and are observed in confined cells in vitro and in invading tumor cells in vivo. Anillin, which binds actomyosin at the cell poles, and Ect2, which activates RhoA, cooperate additively to promote myosin II contractility, and promote efficient invasion and extravasation. Overall, our work provides a mechanistic understanding of how cytokinesis regulators mediate RhoA/ROCK/myosin II-dependent mechanoadaptation during confined migration and invasive cancer progression.

7.
Proc Natl Acad Sci U S A ; 107(9): 4299-304, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20154271

RESUMEN

Kinases are known to regulate fundamental processes in cancer including tumor proliferation, metastasis, neovascularization, and chemoresistance. Accordingly, kinase inhibitors have been a major focus of drug development, and several kinase inhibitors are now approved for various cancer indications. Typically, kinase inhibitors are selected via high-throughput screening using catalytic kinase domains at low ATP concentration, and this process often yields ATP mimetics that lack specificity and/or function poorly in cells where ATP levels are high. Molecules targeting the allosteric site in the inactive kinase conformation (type II inhibitors) provide an alternative for developing selective inhibitors that are physiologically active. By applying a rational design approach using a constrained amino-triazole scaffold predicted to stabilize kinases in the inactive state, we generated a series of selective type II inhibitors of PDGFRbeta and B-RAF, important targets for pericyte recruitment and endothelial cell survival, respectively. These molecules were designed in silico and screened for antivascular activity in both cell-based models and a Tg(fli1-EGFP) zebrafish embryogenesis model. Dual inhibition of PDGFRbeta and B-RAF cellular signaling demonstrated synergistic antiangiogenic activity in both zebrafish and murine models of angiogenesis, and a combination of previously characterized PDGFRbeta and RAF inhibitors validated the synergy. Our lead compound was selected as an orally active molecule with favorable pharmacokinetic properties which demonstrated target inhibition in vivo leading to suppression of murine orthotopic tumors in both the kidney and pancreas.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Carcinoma de Células Renales/patología , División Celular/efectos de los fármacos , Neoplasias Renales/patología , Neovascularización Patológica , Neoplasias Pancreáticas/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Administración Oral , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Pez Cebra
8.
J Cell Sci ; 123(Pt 13): 2332-41, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20530574

RESUMEN

Little is known about how metastatic cancer cells arrest in small capillaries and traverse the vascular wall during extravasation in vivo. Using real-time intravital imaging of human tumor cells transplanted into transparent zebrafish, we show here that extravasation of cancer cells is a highly dynamic process that involves the modulation of tumor cell adhesion to the endothelium and intravascular cell migration along the luminal surface of the vascular wall. Tumor cells do not damage or induce vascular leak at the site of extravasation, but rather induce local vessel remodeling characterized by clustering of endothelial cells and cell-cell junctions. Intravascular locomotion of tumor cells is independent of the direction of blood flow and requires beta1-integrin-mediated adhesion to the blood-vessel wall. Interestingly, the expression of the pro-metastatic gene Twist in tumor cells increases their intravascular migration and extravasation through the vessel wall. However, in this case, Twist expression causes the tumor cells to switch to a beta1-integrin-independent mode of extravasation that is associated with the formation of large dynamic rounded membrane protrusions. Our results demonstrate that extravasation of tumor cells is a highly dynamic process influenced by metastatic genes that target adhesion and intravascular migration of tumor cells, and induce endothelial remodeling.


Asunto(s)
Línea Celular Tumoral/patología , Movimiento Celular , Endotelio , Neoplasias/patología , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral/metabolismo , Extensiones de la Superficie Celular/metabolismo , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/fisiología , Endotelio/citología , Endotelio/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/metabolismo , Proteína 1 Relacionada con Twist/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
9.
Blood ; 116(25): 5773-83, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-20826718

RESUMEN

Angiogenesis is controlled by signals that stimulate motility in endothelial cells at the tips of vascular sprouts while maintaining cell-cell adhesion in the stalks of angiogenic sprouts. We show here that Gs-linked G protein-coupled receptor activation of cAMP-dependent protein kinase (PKA) plays an important role in regulating the switch between endothelial cell adhesion and migration by activating C-terminal Src kinase, leading to inhibition of pp60Src. Activated PKA blocks pp60Src-dependent vascular endot helial-cadherin phosphorylation, thereby stimulating cell-cell adhesion while suppressing endothelial cell polarization, motility, angiogenesis, and vascular permeability. Similar to the actions of Notch and Dll4, PKA activation blocks sprouting in newly forming embryonic blood vessels, while PKA inhibition promotes excessive sprouting in these vessels. These findings demonstrate that G protein-coupled receptors and PKA regulate vascular sprouting during angiogenesis by controlling endothelial cell migration and cell-cell adhesion through their actions on pp60Src.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neovascularización Fisiológica , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal , Western Blotting , Proteína Tirosina Quinasa CSK , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Humanos , Inmunoprecipitación , Fosforilación , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Venas Umbilicales/citología , Venas Umbilicales/metabolismo , Familia-src Quinasas
10.
Front Cell Dev Biol ; 10: 896297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268513

RESUMEN

Metastasis is the primary cause of cancer patient death and the elevation of SLC2A5 gene expression is often observed in metastatic cancer cells. Here we evaluated the importance of SLC2A5 in cancer cell motility by silencing its gene. We discovered that CRISPR/Cas9-mediated inactivation of the SLC2A5 gene inhibited cancer cell proliferation and migration in vitro as well as metastases in vivo in several animal models. Moreover, SLC2A5-attenuated cancer cells exhibited dramatic alterations in mitochondrial architecture and localization, uncovering the importance of SLC2A5 in directing mitochondrial function for cancer cell motility and migration. The direct association of increased abundance of SLC2A5 in cancer cells with metastatic risk in several types of cancers identifies SLC2A5 as an important therapeutic target to reduce or prevent cancer metastasis.

11.
Nat Commun ; 13(1): 6128, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253369

RESUMEN

Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Model and the identity of molecules mediating cell rear shrinkage remain elusive. Here, we demonstrate that NHE1 and SWELL1 preferentially polarize at the cell leading and trailing edges, respectively, mediate cell volume regulation, cell dissemination from spheroids and confined migration. SWELL1 polarization confers migration direction and efficiency, as predicted mathematically and determined experimentally via optogenetic spatiotemporal regulation. Optogenetic RhoA activation at the cell front triggers SWELL1 re-distribution and migration direction reversal in SWELL1-expressing, but not SWELL1-knockdown, cells. Efficient cell reversal also requires Cdc42, which controls NHE1 repolarization. Dual NHE1/SWELL1 knockdown inhibits breast cancer cell extravasation and metastasis in vivo, thereby illustrating the physiological significance of the Osmotic Engine Model.


Asunto(s)
Neoplasias , Intercambiadores de Sodio-Hidrógeno , Movimiento Celular/fisiología , Tamaño de la Célula , Humanos , Agua
12.
Circ Res ; 104(8): 952-60, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19265037

RESUMEN

Lipid accumulation in arteries induces vascular inflammation and atherosclerosis, the major cause of heart attack and stroke in humans. Extreme hyperlipidemia induced in mice and rabbits enables modeling many aspects of human atherosclerosis, but microscopic examination of plaques is possible only postmortem. Here we report that feeding adult zebrafish (Danio rerio) a high-cholesterol diet (HCD) resulted in hypercholesterolemia, remarkable lipoprotein oxidation, and fatty streak formation in the arteries. Feeding an HCD supplemented with a fluorescent cholesteryl ester to optically transparent fli1:EGFP zebrafish larvae in which endothelial cells express green fluorescent protein (GFP), and using confocal microscopy enabled monitoring vascular lipid accumulation and the endothelial cell layer disorganization and thickening in a live animal. The HCD feeding also increased leakage of a fluorescent dextran from the blood vessels. Administering ezetimibe significantly diminished the HCD-induced endothelial cell layer thickening and improved its barrier function. Feeding HCD to lyz:DsRed2 larvae in which macrophages and granulocytes express DsRed resulted in the accumulation of fluorescent myeloid cells in the vascular wall. Using a fluorogenic substrate for phospholipase A(2) (PLA(2)), we observed an increased vascular PLA(2) activity in live HCD-fed larvae compared to control larvae. Furthermore, by transplanting genetically modified murine cells into HCD-fed larvae, we demonstrated that toll-like receptor-4 was required for efficient in vivo lipid uptake by macrophages. These results suggest that the novel zebrafish model is suitable for studying temporal characteristics of certain inflammatory processes of early atherogenesis and the in vivo function of vascular cells.


Asunto(s)
Aterosclerosis/metabolismo , Endotelio Vascular/metabolismo , Hipercolesterolemia/metabolismo , Metabolismo de los Lípidos , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Pez Cebra/metabolismo , Factores de Edad , Envejecimiento/metabolismo , Animales , Animales Modificados Genéticamente , Anticolesterolemiantes/farmacología , Aterosclerosis/etiología , Aterosclerosis/patología , Azetidinas/farmacología , Línea Celular , Colesterol en la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Ezetimiba , Femenino , Proteínas Fluorescentes Verdes/genética , Humanos , Hipercolesterolemia/etiología , Hipercolesterolemia/patología , Larva/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas/sangre , Proteínas Luminiscentes/genética , Macrófagos/trasplante , Masculino , Ratones , Microscopía Confocal , Oxidación-Reducción , Permeabilidad , Fosfolipasas A2/metabolismo , Factores de Tiempo , Receptor Toll-Like 4/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
13.
Proc Natl Acad Sci U S A ; 105(7): 2313-8, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18268346

RESUMEN

Screening for novel anticancer drugs in chemical libraries isolated from marine organisms, we identified the lipopeptide somocystinamide A (ScA) as a pluripotent inhibitor of angiogenesis and tumor cell proliferation. The antiproliferative activity was largely attributable to induction of programmed cell death. Sensitivity to ScA was significantly increased among cells expressing caspase 8, whereas siRNA knockdown of caspase 8 increased survival after exposure to ScA. ScA rapidly and efficiently partitioned into liposomes while retaining full antiproliferative activity. Consistent with the induction of apoptosis via the lipid compartment, we noted accumulation and aggregation of ceramide in treated cells and subsequent colocalization with caspase 8. Angiogenic endothelial cells were extremely sensitive to ScA. Picomolar concentrations of ScA disrupted proliferation and endothelial tubule formation in vitro. Systemic treatment of zebrafish or local treatment of the chick chorioallantoic membrane with ScA resulted in dose-dependent inhibition of angiogenesis, whereas topical treatment blocked tumor growth among caspase-8-expressing tumors. Together, the results reveal an unexpected mechanism of action for this unique lipopeptide and suggest future development of this and similar agents as antiangiogenesis and anticancer drugs.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 8/metabolismo , Disulfuros/farmacología , Lipoproteínas/farmacología , Inhibidores de la Angiogénesis/farmacología , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Pollos , Disulfuros/química , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Humanos , Estructura Molecular , Océanos y Mares , Fosfolípidos/metabolismo , Sensibilidad y Especificidad
14.
J Vis Exp ; (168)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33616096

RESUMEN

Recent advances in cancer research has illustrated the highly complex nature of cancer metastasis. Multiple genes or genes networks have been found to be involved in differentially regulating cancer metastatic cascade genes and gene products dependent on the cancer type, tissue, and individual patient characteristics. These represent potentially important targets for genetic therapeutics and personalized medicine approaches. The development of rapid screening platforms is essential for the identification of these genetic targets. The chick chorioallantoic membrane (CAM) is a highly vascularized, collagen rich membrane located under the eggshell that allows for gas exchange in the developing embryo. Due to the location and vascularization of the CAM, we developed it as an intravital human cancer metastasis model that allows for robust human cancer cell xenografting and real-time imaging of cancer cell interactions with the collagen rich matrix and vasculature. Using this model, a quantitative screening platform was designed for the identification of novel drivers or suppressors of cancer metastasis. We transduced a pool of head and neck HEp3 cancer cells with a complete human genome shRNA gene library, then injected the cells, at low density, into the CAM vasculature. The cells proliferated and formed single-tumor cell colonies. Individual colonies that were unable to invade into the CAM tissue were visible as a compact colony phenotype and excised for identification of the transduced shRNA present in the cells. Images of individual colonies were evaluated for their invasiveness. Multiple rounds of selections were performed to decreases the rate of false positives. Individual, isolated cancer cell clones or newly engineered clones that express genes of interest were subjected to primary tumor formation assay or cancer cell vasculature co-option analysis. In summary we present a rapid screening platform that allows for anti-metastatic target identification and intravital analysis of a dynamic and complex cascade of events.


Asunto(s)
Membrana Corioalantoides/patología , Modelos Animales de Enfermedad , Neoplasias/patología , Neovascularización Patológica , Animales , Apoptosis , Proliferación Celular , Pollos , Humanos , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Eur Urol Open Sci ; 23: 1-8, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34337483

RESUMEN

BACKGROUND: Serine-arginine protein kinase 1 (SRPK1) has been implicated in prostate cancer (PCa) progression. However, its prognostic value and association with ERG and PTEN expression, two of the most common genetic alterations, have not been explored fully. OBJECTIVE: We assessed the prognostic value of SRPK1 in association with ERG and PTEN in a cohort of patients managed nonsurgically by androgen deprivation therapy (ADT) for advanced disease. DESIGN SETTING AND PARTICIPANTS: The study cohort consisted of men diagnosed with PCa by transurethral resection of the prostate (TURP; n = 480). The patients were divided into three main groups: incidental (patients with Gleason score [GS] ≤7 with no prior ADT), advanced (patients with GS ≥8 with no prior ADT), and castrate-resistant PCa (patients with prior ADT). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: A total of 480 TURP samples were assessed by immunohistochemistry for SRPK1, ERG, and PTEN, and results were correlated with Gleason grade group (GG), overall survival (OS), and PCa-specific mortality (PCSM). RESULTS AND LIMITATIONS: High SRPK1 expression was noted in 105/455 (23%) available patient cores. Expression of SRPK1 was associated with Gleason grade grouping (p < 0.0001) with high expression detected in 22/74 (33%) with GG 5. High SRPK1 was not associated with ERG positivity (p = 0.18) but was significantly associated with PTEN intensity (p = 0.001). High SRPK1 was associated with OS (hazard ratio [HR] 1.99; confidence interval [CI]: 1.57-2.54, p < 0.0001) and PCSM (HR 1.64; CI: 1.19-2.26, p < 0.002). Adjusting for Gleason score, patients with high SRPK1 and negative PTEN had the worst clinical outcome for both OS and PCSM compared with other patients (p < 0.0001, HR: 3.02; CI: 1.87-4.88 and HR: 6.40, CI: 3.19-12.85, respectively). CONCLUSIONS: High SRPK1 is associated with worse OS and PCSM. Moreover, patients with high SRPK1 expression and loss of PTEN had the worst clinical outcome for OS and cancer-specific mortality. Combined status of SRPK1 and PTEN may provide added value in stratifying patients into various prognostic groups. PATIENT SUMMARY: The expression of serine-arginine protein kinase 1 (SRPK1) combined with PTEN has a significant prognostic role in prostate cancer patients. Patients with high SRPK1 expression and negative PTEN had the worst clinical outcome for overall survival and cancer-specific mortality.

16.
Sci Adv ; 7(28)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34244134

RESUMEN

Tumor cell intravasation preferentially occurs in regions of low fluid shear because high shear is detrimental to tumor cells. Here, we describe a molecular mechanism by which cells avoid high shear during intravasation. The transition from migration to intravasation was modeled using a microfluidic device where cells migrating inside longitudinal tissue-like microchannels encounter an orthogonal channel in which fluid flow induces physiological shear stresses. This approach was complemented with intravital microscopy, patch-clamp, and signal transduction imaging techniques. Fluid shear-induced activation of the transient receptor potential melastatin 7 (TRPM7) channel promotes extracellular calcium influx, which then activates RhoA/myosin-II and calmodulin/IQGAP1/Cdc42 pathways to coordinate reversal of migration direction, thereby avoiding shear stress. Cells displaying higher shear sensitivity due to higher TRPM7 activity levels intravasate less efficiently and establish less invasive metastatic lesions. This study provides a mechanistic interpretation for the role of shear stress and its sensor, TRPM7, in tumor cell intravasation.

17.
Expert Rev Anticancer Ther ; 20(2): 97-109, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31997674

RESUMEN

Introduction: Metastatic cancers are extremely difficult to treat, and account for the vast majority of cancer-related deaths. The dissemination of tumor cells to distant sites is highly dynamic, asynchronous, and involves both tumor and host intrinsic factors. Effective therapeutic targets to block metastasis will need to disrupt key pathways that are required for multiple stages of metastasis.Areas covered: This review discusses the heterogeneity of cancers and metastasis, with an emphasis on motility as a key driver trait of metastasis. Recent metastatic cancer studies that identified either host or cancer cell intrinsic factors important for metastasis, using single gene-deficient animal models or 3D intravital imaging of avian embryo models, are also discussed. Potential metastatic blocking targets are listed as they relate to metastatic cancer therapy.Expert opinion: The development of metastatic disease is a complex interplay of genetic and epigenetic factors from the host and cancer cells acting in a patient-specific manner. Inhibiting key driver traits of metastasis should yield survival benefit at any stage of the disease, and we look forward to the next generation of personalized medicines for cancer therapy that target cancer cell motility for increased therapeutic efficacy.


Asunto(s)
Terapia Molecular Dirigida , Metástasis de la Neoplasia/prevención & control , Neoplasias/terapia , Animales , Movimiento Celular , Epigénesis Genética , Humanos , Neoplasias/genética , Neoplasias/patología , Medicina de Precisión
18.
Cell Stress ; 2(10): 275-278, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31225451

RESUMEN

Cancer cell motility is a key driver of metastasis. Although the intravasation of cancer cells into the blood stream is highly dependent on their motility and metastatic dissemination is the primary cause of cancer related deaths, current therapeutic strategies do not target the genes and proteins that are essential for cell motility. A primary reason for this is because the identification of cell motility-related genes that are relevant in vivo requires the visualization of metastatic lesions forming in an appropriate in vivo model. The cancer research community has lacked an in vivo and intravital metastatic cancer model that could be imaged as motility developed, in real-time. To address this, we developed a novel quantitative in vivo screening platform based on intravital imaging in shell-less ex ovo chick embryos. We applied this imaging approach to screen a human genome-wide short hairpin RNA library (shRNA) versus the highly motile head and neck cancer cells (HEp3 cell line) introduced into the chorioallantoic membrane (CAM) of chick embryos and identified multiple novel in vivo cancer cell motility-associated genes. When the expression of several of the identified genes was inhibited in the HEp3 tumors, we observed a nearly total block of spontaneous cancer metastasis.

19.
Nat Commun ; 9(1): 2343, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29904055

RESUMEN

Metastasis is the most lethal aspect of cancer, yet current therapeutic strategies do not target its key rate-limiting steps. We have previously shown that the entry of cancer cells into the blood stream, or intravasation, is highly dependent upon in vivo cancer cell motility, making it an attractive therapeutic target. To systemically identify genes required for tumor cell motility in an in vivo tumor microenvironment, we established a novel quantitative in vivo screening platform based on intravital imaging of human cancer metastasis in ex ovo avian embryos. Utilizing this platform to screen a genome-wide shRNA library, we identified a panel of novel genes whose function is required for productive cancer cell motility in vivo, and whose expression is closely associated with metastatic risk in human cancers. The RNAi-mediated inhibition of these gene targets resulted in a nearly total (>99.5%) block of spontaneous cancer metastasis in vivo.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Trasplante de Neoplasias , Interferencia de ARN , Animales , Línea Celular Tumoral , Movimiento Celular , Embrión de Pollo , Colágeno/química , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Invasividad Neoplásica , Metástasis de la Neoplasia , Fenotipo , Neoplasias de la Próstata/patología , ARN Interferente Pequeño/metabolismo
20.
Nat Commun ; 8: 15059, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28436416

RESUMEN

We have previously shown that lipoma preferred partner (LPP) mediates TGFß-induced breast cancer cell migration and invasion. Herein, we demonstrate that diminished LPP expression reduces circulating tumour cell numbers, impairs cancer cell extravasation and diminishes lung metastasis. LPP localizes to invadopodia, along with Tks5/actin, at sites of matrix degradation and at the tips of extravasating breast cancer cells as revealed by intravital imaging of the chick chorioallantoic membrane (CAM). Invadopodia formation, breast cancer cell extravasation and metastasis require an intact LPP LIM domain and the ability of LPP to interact with α-actinin. Finally, we show that Src-mediated LPP phosphorylation at specific tyrosine residues (Y245/301/302) is critical for invadopodia formation, breast cancer cell invasion and metastasis. Together, these data define a previously unknown function for LPP in the formation of invadopodia and reveal a requirement for LPP in mediating the metastatic ability of breast cancer cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas con Dominio LIM/metabolismo , Neoplasias Pulmonares/metabolismo , Podosomas/metabolismo , Familia-src Quinasas/metabolismo , Actinina/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular , Línea Celular Tumoral , Proteínas del Citoesqueleto/genética , Femenino , Humanos , Proteínas con Dominio LIM/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Ratones , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Fosforilación , Unión Proteica , Interferencia de ARN , Especificidad por Sustrato , Familia-src Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA