Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 290(10): 6408-18, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25586182

RESUMEN

Engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) is a bipartite guanine nucleotide exchange factor for the monomeric GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). Elmo1/Dock180 regulates Rac1 activity in a specific spatiotemporal manner in endothelial cells (ECs) during zebrafish development and acts downstream of the Netrin-1/Unc5-homolog B (Unc5B) signaling cascade. However, mechanistic details on the pathways by which Elmo1/Dock180 regulates endothelial function and vascular development remained elusive. In this study, we aimed to analyze the vascular function of Elmo1 and Dock180 in human ECs and during vascular development in zebrafish embryos. In vitro overexpression of Elmo1 and Dock180 in ECs reduced caspase-3/7 activity and annexin V-positive cell number upon induction of apoptosis. This protective effect of Elmo1 and Dock180 is mediated by activation of Rac1, p21-activated kinase (PAK) and AKT/protein kinase B (AKT) signaling. In zebrafish, Elmo1 and Dock180 overexpression reduced the total apoptotic cell and apoptotic EC number and promoted the formation of blood vessels during embryogenesis. In conclusion, Elmo1 and Dock180 protect ECs from apoptosis by the activation of the Rac1/PAK/AKT signaling cascade in vitro and in vivo. Thus, Elmo1 and Dock180 facilitate blood vessel formation by stabilization of the endothelium during angiogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Vasos Sanguíneos/metabolismo , Neovascularización Fisiológica , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/genética , Vasos Sanguíneos/crecimiento & desarrollo , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Unión al GTP rac/biosíntesis , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/genética
2.
Circ Res ; 108(11): 1367-77, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21493894

RESUMEN

RATIONALE: The transcription factor HOXC9 belongs to the homeobox gene family acting as developmental morphogen in several species. HOXC9 is EXPRESSED in different vascular beds in vivo. Yet vascular functions of HOXC9 have not been studied. OBJECTIVE: This study was aimed at characterizing HOXC9 functions in human vascular endothelial cells and in zebrafish vascular development. METHODS AND RESULTS: HOXC9 was abundantly expressed in resting human umbilical vein endothelial cells and was downregulated by hypoxia. Overexpression of HOXC9 inhibited endothelial cell proliferation, migration, and tube formation in vitro. Expression profiling and chromatin immunoprecipitation experiments in human umbilical vein endothelial cells identified interleukin 8 as the major HOXC9 target and demonstrated the direct binding of HOXC9 to the interleukin 8 promotor. HOXC9 overexpression led to reduced endothelial interleukin 8 production, whereas HOXC9 silencing increased interleukin 8. The antimigratory and antiangiogenic effect of HOXC9 overexpression could be rescued by external interleukin 8 administration. Corresponding to the cellular experiments, endothelial-specific overexpression of HOXC9 and morpholino-based interleukin 8 loss-of-function experiments inhibited zebrafish vascular development. CONCLUSION: The data identify HOXC9 as an endothelial cell active transcriptional repressor promoting the resting, antiangiogenic endothelial cell phenotype in an interleukin 8-dependent manner.


Asunto(s)
Células Endoteliales/fisiología , Proteínas de Homeodominio/genética , Hipoxia/fisiopatología , Interleucina-8/fisiología , Neovascularización Fisiológica/fisiología , Proteínas de Pez Cebra/genética , Animales , Capilares/citología , Capilares/fisiología , División Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Regulación hacia Abajo/fisiología , Células Endoteliales/citología , Proteínas de Homeodominio/metabolismo , Humanos , Venas Umbilicales/citología , Pez Cebra , Proteínas de Pez Cebra/metabolismo
3.
Diabetes ; 69(5): 1020-1031, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139597

RESUMEN

Progression from the initial vascular response upon hyperglycemia to a proliferative stage with neovacularizations is the hallmark of proliferative diabetic retinopathy. Here, we report on the novel diabetic pdx1 -/- zebrafish mutant as a model for diabetic retinopathy that lacks the transcription factor pdx1 through CRISPR-Cas9-mediated gene knockout leading to disturbed pancreatic development and hyperglycemia. Larval pdx1 -/- mutants prominently show vasodilation of blood vessels through increased vascular thickness in the hyaloid network as direct developmental precursor of the adult retinal vasculature in zebrafish. In adult pdx1 -/- mutants, impaired glucose homeostasis induces increased hyperbranching and hypersprouting with new vessel formation in the retina and aggravation of the vascular alterations from the larval to the adult stage. Both vascular aspects respond to antiangiogenic and antihyperglycemic pharmacological interventions in the larval stage and are accompanied by alterations in the nitric oxide metabolism. Thus, the pdx1 -/- mutant represents a novel model to study mechanisms of hyperglycemia-induced retinopathy wherein extensive proangiogenic alterations in blood vessel morphology and metabolic alterations underlie the vascular phenotype.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Hiperglucemia , Neovascularización Patológica , Vasos Retinianos/fisiología , Transactivadores/metabolismo , Animales , Glucemia , Sistemas CRISPR-Cas , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Larva , Óxido Nítrico/metabolismo , Ftalazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Neovascularización Retiniana , Transactivadores/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
4.
Sci Rep ; 6: 37172, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27849017

RESUMEN

Engulfment and cell motility 1 (ELMO1) functions as a guanine exchange factor for Rac1 and was recently found to protect endothelial cells from apoptosis. Genome wide association studies suggest that polymorphisms within human elmo1 act as a potential contributing factor for the development of diabetic nephropathy. Yet, the function of ELMO1 with respect to the glomerulus and how this protein contributes to renal pathology was unknown. Thus, this study aimed to identify the role played by ELMO1 in renal development in zebrafish, under hyperglycaemic conditions, and in diabetic nephropathy patients. In zebrafish, hyperglycaemia did not alter renal ELMO1 expression. However, hyperglycaemia leads to pathophysiological and functional alterations within the pronephros, which could be rescued via ELMO1 overexpression. Zebrafish ELMO1 crispants exhibited a renal pathophysiology due to increased apoptosis which could be rescued by the inhibition of apoptosis. In human samples, immunohistochemical staining of ELMO1 in nondiabetic, diabetic and polycystic kidneys localized ELMO1 in glomerular podocytes and in the tubules. However, ELMO1 was not specifically or distinctly regulated under either one of the disease conditions. Collectively, these results highlight ELMO1 as an important factor for glomerular protection and renal cell survival via decreasing apoptosis, especially under diabetic conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Diabetes Mellitus Experimental/embriología , Riñón/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Modificados Genéticamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Humanos , Riñón/patología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
Sci Rep ; 5: 15007, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26458334

RESUMEN

JUNB, a subunit of the AP-1 transcription factor complex, mediates gene regulation in response to a plethora of extracellular stimuli. Previously, JUNB was shown to act as a critical positive regulator of blood vessel development and homeostasis as well as a negative regulator of proliferation, inflammation and tumour growth. Here, we demonstrate that the oncogenic miR-182 is a novel JUNB target. Loss-of-function studies by morpholino-mediated knockdown and the CRISPR/Cas9 technology identify a novel function for both JUNB and its target miR-182 in lymphatic vascular development in zebrafish. Furthermore, we show that miR-182 attenuates foxo1 expression indicating that strictly balanced Foxo1 levels are required for proper lymphatic vascular development in zebrafish. In conclusion, our findings uncover with the Junb/miR-182/Foxo1 regulatory axis a novel key player in governing lymphatic vascular morphogenesis in zebrafish.


Asunto(s)
Regulación de la Expresión Génica , Linfangiogénesis , MicroARNs/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Expresión Génica Ectópica , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Fenotipo , Proteínas Proto-Oncogénicas c-jun/genética , Conducto Torácico/embriología , Conducto Torácico/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
6.
Diabetes ; 64(1): 213-25, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25092676

RESUMEN

Hyperglycemia causes micro- and macrovascular complications in diabetic patients. Elevated glucose concentrations lead to increased formation of the highly reactive dicarbonyl methylglyoxal (MG), yet the early consequences of MG for development of vascular complications in vivo are poorly understood. In this study, zebrafish were used as a model organism to analyze early vascular effects and mechanisms of MG in vivo. High tissue glucose increased MG concentrations in tg(fli:EGFP) zebrafish embryos and rapidly induced several additional malformed and uncoordinated blood vessel structures that originated out of existing intersomitic blood vessels (ISVs). However, larger blood vessels, including the dorsal aorta and common cardinal vein, were not affected. Expression silencing of MG-degrading enzyme glyoxalase (glo) 1 elevated MG concentrations and induced a similar vascular hyperbranching phenotype in zebrafish. MG enhanced phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 and its downstream target Akt/protein kinase B (PKB). Pharmacological inhibitors for VEGF receptor 2 and Akt/PKB as well as MG scavenger aminoguanidine and glo1 activation prevented MG-induced hyperbranching of ISVs. Taken together, MG acts on smaller blood vessels in zebrafish via the VEGF receptor signaling cascade, thereby describing a new mechanism that can explain vascular complications under hyperglycemia and elevated MG concentrations.


Asunto(s)
Vasos Sanguíneos/metabolismo , Glucosa/metabolismo , Piruvaldehído/metabolismo , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Vasos Sanguíneos/anomalías , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Masculino , Neovascularización Fisiológica/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
PLoS One ; 8(3): e58311, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23484014

RESUMEN

HOXC9 belongs to the family of homeobox transcription factors, which are regulators of body patterning and development. HOXC9 acts as a negative regulator on blood endothelial cells but its function on lymphatic vessel development has not been studied. The hyaluronan receptor homologs stabilin 1 and stabilin 2 are expressed in endothelial cells but their role in vascular development is poorly understood. This study was aimed at investigating the function of HOXC9, stabilin 2 and stabilin 1 in lymphatic vessel development in zebrafish and in endothelial cells. Morpholino-based expression silencing of HOXC9 repressed parachordal lymphangioblast assembly and thoracic duct formation in zebrafish. HOXC9 positively regulated stabilin 2 expression in zebrafish and in HUVECs and expression silencing of stabilin 2 phenocopied the HOXC9 morphant vascular phenotype. This effect could be compensated by HOXC9 mRNA injection in stabilin 2 morphant zebrafish embryos. Stabilin 1 also regulated parachordal lymphangioblast and thoracic duct formation in zebrafish but acts independently of HOXC9. On a cellular level stabilin 1 and stabilin 2 regulated endothelial cell migration and in-gel sprouting angiogenesis in endothelial cells. HOXC9 was identified as novel transcriptional regulator of parachordal lymphangioblast assembly and thoracic duct formation in zebrafish that acts via stabilin 2. Stabilin 1, which acts independently of HOXC9, has a similar function in zebrafish and both receptors control important cellular processes in endothelial cells.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Vasos Linfáticos/embriología , Conducto Torácico/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Western Blotting , Cartilla de ADN/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Microscopía Fluorescente , Receptores Mensajeros de Linfocitos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA