RESUMEN
Barth syndrome (BTHS) is an X-linked recessive disorder caused by mutations in the tafazzin (or TAZ) gene and is clinically characterized by (cardio)myopathy, neutropenia, and growth abnormalities. Biochemical abnormalities include decreased levels of the mitochondrial phospholipid cardiolipin, increased levels of monolysocardiolipin, and a lower degree of unsaturation of the (monolyso)cardiolipin acyl chains. Diagnostic testing for BTHS is routinely performed by TAZ gene sequencing, and recently a BTHS screening method in bloodspots has been developed, but both methods have important limitations. Because a validated confirmatory method is not yet available, we set up and validated a high-performance liquid chromatography-mass spectrometry (HPLC-MS) method for BTHS in cultured fibroblasts, lymphocytes, and skeletal muscle based on cardiolipin, monolysocardiolipin, and the monolysocardiolipin/cardiolipin ratio. In addition, we performed retrospective analysis of 121 muscle samples of patients with myopathy of which mitochondrial origin was presumed, and we identified one patient with cardiolipin abnormalities similar to BTHS patients. Molecular analysis revealed a bona fide mutation in the TAZ gene. We conclude that (monolyso)cardiolipin analysis by HPLC-MS not only is a powerful tool to diagnose patients with clinical signs and symptoms of BTHS but also should be used in patients suffering from mitochondrial myopathies with unknown etiology.
Asunto(s)
Cardiolipinas/análisis , Cromatografía Líquida de Alta Presión/métodos , Fibroblastos/química , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Linfocitos/química , Lisofosfolípidos/análisis , Espectrometría de Masas/métodos , Aciltransferasas , Células Cultivadas , Humanos , Músculos/química , Enfermedades Musculares/metabolismo , Estudios Retrospectivos , Síndrome , Factores de Transcripción/genéticaRESUMEN
BACKGROUND: Barth syndrome (BTHS) is a serious X-linked, metabolic, multisystem disorder characterized by cardiomyopathy, neutropenia, myopathy, and growth delay. Because early diagnosis and appropriate treatment are of key importance for the survival of affected boys, we developed a biochemical BTHS screening method based on analysis of the monolysocardiolipin:cardiolipin ratio in bloodspots. METHODS: We performed chloroform/methanol extraction on quarter-inch punches of dried bloodspots on Guthrie cards from BTHS patients and controls. Extracts were dried (60 degrees C, N(2)) and reconstituted in CHCl(3)/methanol/H(2)O [50:45:5 vol/vol/vol, 0.1% NH(3) (25%)]. HPLC-tandem mass spectrometry analysis was performed with a normal-phase HPLC column and multiple reaction monitoring transitions for monolysocardiolipin (MLCL) and cardiolipin (CL) with a total run time of 10 min. The ratio of MLCL and CL was used as screening parameter. RESULTS: All BTHS patients (n = 31) had monolysocardiolipin:cardiolipin ratios >0.40 and all controls (n = 215) had monolysocardiolipin:cardiolipin ratios <0.23. Using a cutoff point of 0.30, a blind test of 206 samples (199 controls, 7 BTHS) had sensitivity and specificity of 100%. Bloodspots could be stored at 4 degrees C or room temperature for >1 year without affecting the test outcome. Three neonatal Guthrie cards of BTHS patients taken 3.6 to 5.8 years previously were correctly identified as positive for BTHS. CONCLUSIONS: HPLC-tandem mass spectrometry analysis of dried bloodspots is an unambiguous screening test for BTHS with potential for rapid screening of neonates suspected of having BTHS, making remote and retrospective diagnosis accessible for a disease that is almost certainly underdiagnosed.