Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 608
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 97(2): 623-665, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28179395

RESUMEN

Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.


Asunto(s)
Adaptación Fisiológica/fisiología , Epigénesis Genética/fisiología , Congelación , Regulación de la Expresión Génica/genética , Hibernación/fisiología , Animales , Humanos , Vertebrados
2.
BMC Genomics ; 25(1): 454, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720264

RESUMEN

BACKGROUND: In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS: We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS: In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.


Asunto(s)
Anuros , Hibernación , Metabolómica , Músculo Esquelético , Animales , Hibernación/genética , Hibernación/fisiología , Músculo Esquelético/metabolismo , Anuros/genética , Anuros/metabolismo , Anuros/fisiología , Miocardio/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Estaciones del Año , Metaboloma , Tibet
3.
Artículo en Inglés | MEDLINE | ID: mdl-38521444

RESUMEN

Hypometabolism is a common strategy employed by resilient species to withstand environmental stressors that would be life-threatening for other organisms. Under conditions such as hypoxia/anoxia, temperature and salinity stress, or seasonal changes (e.g. hibernation, estivation), stress-tolerant species down-regulate pathways to decrease energy expenditures until the return of less challenging conditions. However, it is with the return of these more favorable conditions and the reactivation of basal metabolic rates that a strong increase of reactive oxygen and nitrogen species (RONS) occurs, leading to oxidative stress. Over the last few decades, cases of species capable of enhancing antioxidant defenses during hypometabolic states have been reported across taxa and in response to a variety of stressors. Interpreted as an adaptive mechanism to counteract RONS formation during tissue hypometabolism and reactivation, this strategy was coined "Preparation for Oxidative Stress" (POS). Laboratory experiments have confirmed that over 100 species, spanning 9 animal phyla, apply this strategy to endure harsh environments. However, the challenge remains to confirm its occurrence in the natural environment and its wide applicability as a key survival element, through controlled experimentation in field and in natural conditions. Under such conditions, numerous confounding factors may complicate data interpretation, but this remains the only approach to provide an integrative look at the evolutionary aspects of ecophysiological adaptations. In this review, we provide an overview of representative cases where the POS strategy has been demonstrated among diverse species in natural environmental conditions, discussing the strengths and weaknesses of these results and conclusions.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Animales , Estrés Oxidativo/fisiología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ambiente , Oxígeno , Hipoxia/metabolismo , Especies de Nitrógeno Reactivo
4.
J Therm Biol ; 122: 103865, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38761482

RESUMEN

For the breadth of the winter, Dryophytes versicolor can survive full body freezing utilizing a phenomenon known as metabolic rate depression (MRD). Epigenetic transcriptional control on gene expression, such as histone methylation and acetylation, can aid in implementing a balance between permissive and restricted chromatin required to endure this stress. As such, this study explores the interplay between histone lysine methyl and acetyl transferases (HKMTs, HATs), as well as the abundance of various acetyl-lysine and methyl-lysine moieties on histone H3 and H4. Results showing that overexpression of transcriptionally repressive marks, and under expression of active ones, suggest a negative effect on overall gene transcription in skeletal muscle tissue.


Asunto(s)
Epigénesis Genética , Histonas , Lisina , Músculo Esquelético , Histonas/metabolismo , Músculo Esquelético/metabolismo , Lisina/metabolismo , Acetilación , Metilación , Animales , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Congelación
5.
J Therm Biol ; 119: 103785, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38320933

RESUMEN

Extracellular Ca2+ plays a pivotal role in the regulation of cardiac contractility under normal and extreme conditions. Here, by using nickel chloride (NiCl2), a non-specific blocker of extracellular Ca2+ influx, we studied the input of extracellular Ca2+ on the regulation of papillary muscle (PM) contractility under normal and hypothermic conditions in ground squirrels (GS), and rats. By measuring isometric force of contraction, we studied how NiCl2 affects force-frequency relationship and the rest effect in PM of these species at 30 °C and 10 °C. We found that at 30 °C 1.5 mM NiCl2 significantly reduced force of contraction across entire frequency range in active GS and rats, whereas in hibernating GS force of contraction was reduced at low and high frequency range. Additionally, NiCl2 evoked spontaneous contractility in rats but not GS PM. The rest effect was significantly reduced by NiCl2 for active GS and rats but not hibernating GS. At 10 °C, NiCl2 fully reduced contractility in active GS and, to a lesser extent, in rats, whereas in hibernating GS it was significant only at 0.3 Hz. The rest effect was significantly reduced by NiCl2 in both active and hibernating GS, whereas it was unmasked in rats that had high contractility under hypothermic conditions in control. Our results show a significant contribution of extracellular Ca2+ to myocardial contractility in GS not only in active but also in hibernating states, especially under hypothermic conditions, whereas limitation of extracellular Ca2+ influx in rats under hypothermia can play protective role for myocardial contractility.


Asunto(s)
Hibernación , Hipotermia , Níquel , Ratas , Animales , Músculos Papilares/fisiología , Hipotermia/inducido químicamente , Ratas Wistar , Sciuridae/fisiología , Hibernación/fisiología
6.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892163

RESUMEN

Extreme weather poses huge challenges for animals that must adapt to wide variations in environmental temperature and, in many cases, it can lead to the local extirpation of populations or even the extinction of an entire species. Previous studies have found that one element of amphibian adaptation to environmental stress involves changes in mitochondrial gene expression at low temperatures. However, to date, comparative studies of gene expression in organisms living at extreme temperatures have focused mainly on nuclear genes. This study sequenced the complete mitochondrial genomes of five Asian hylid frog species: Dryophytes japonicus, D. immaculata, Hyla annectans, H. chinensis and H. zhaopingensis. It compared the phylogenetic relationships within the Hylidae family and explored the association between mitochondrial gene expression and evolutionary adaptations to cold stress. The present results showed that in D. immaculata, transcript levels of 12 out of 13 mitochondria genes were significantly reduced under cold exposure (p < 0.05); hence, we put forward the conjecture that D. immaculata adapts by entering a hibernation state at low temperature. In H. annectans, the transcripts of 10 genes (ND1, ND2, ND3, ND4, ND4L, ND5, ND6, COX1, COX2 and ATP8) were significantly reduced in response to cold exposure, and five mitochondrial genes in H. chinensis (ND1, ND2, ND3, ND4L and ATP6) also showed significantly reduced expression and transcript levels under cold conditions. By contrast, transcript levels of ND2 and ATP6 in H. zhaopingensis were significantly increased at low temperatures, possibly related to the narrow distribution of this species primarily at low latitudes. Indeed, H. zhaopingensis has little ability to adapt to low temperature (4 °C), or maybe to enter into hibernation, and it shows metabolic disorder in the cold. The present study demonstrates that the regulatory trend of mitochondrial gene expression in amphibians is correlated with their ability to adapt to variable climates in extreme environments. These results can predict which species are more likely to undergo extirpation or extinction with climate change and, thereby, provide new ideas for the study of species extinction in highly variable winter climates.


Asunto(s)
Anuros , Genoma Mitocondrial , Filogenia , Animales , Anuros/genética , Anuros/fisiología , Respuesta al Choque por Frío/genética , Frío , Adaptación Fisiológica/genética , Regulación de la Expresión Génica
7.
J Cell Physiol ; 238(11): 2724-2748, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37733616

RESUMEN

Hibernating mammals are natural models of resistance to ischemia, hypoxia-reperfusion injury, and hypothermia. Daurian ground squirrels (spermophilus dauricus) can adapt to endure multiple torpor-arousal cycles without sustaining cardiac damage. However, the molecular regulatory mechanisms that underlie this adaptive response are not yet fully understood. This study investigates morphological, functional, genetic, and metabolic changes that occur in the heart of ground squirrels in three groups: summer active (SA), late torpor (LT), and interbout arousal (IBA). Morphological and functional changes in the heart were measured using hematoxylin-eosin (HE) staining, Masson staining, echocardiography, and enzyme-linked immunosorbent assay (ELISA). Results showed significant changes in cardiac function in the LT group as compared with SA or IBA groups, but no irreversible damage occurred. To understand the molecular mechanisms underlying these phenotypic changes, transcriptomic and metabolomic analyses were conducted to assess differential changes in gene expression and metabolite levels in the three groups of ground squirrels, with a focus on GO and KEGG pathway analysis. Transcriptomic analysis showed that differentially expressed genes were involved in the remodeling of cytoskeletal proteins, reduction in protein synthesis, and downregulation of the ubiquitin-proteasome pathway during hibernation (including LT and IBA groups), as compared with the SA group. Metabolomic analysis revealed increased free amino acids, activation of the glutathione antioxidant system, altered cardiac fatty acid metabolic preferences, and enhanced pentose phosphate pathway activity during hibernation as compared with the SA group. Combining the transcriptomic and metabolomic data, active mitochondrial oxidative phosphorylation and creatine-phosphocreatine energy shuttle systems were observed, as well as inhibition of ferroptosis signaling pathways during hibernation as compared with the SA group. In conclusion, these results provide new insights into cardio-protection in hibernators from the perspective of gene and metabolite changes and deepen our understanding of adaptive cardio-protection mechanisms in mammalian hibernators.


Asunto(s)
Hibernación , Sciuridae , Animales , Sciuridae/genética , Transcriptoma/genética , Corazón , Hibernación/genética , Glutatión/metabolismo
8.
Biochem Cell Biol ; 101(1): 77-86, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462217

RESUMEN

Rana sylvatica (also known as Boreorana sylvatica) is one of the few vertebrates that spend extreme winters showing no physiological signs of life. Up to 70% of the total body water of the wood frog freezes as extracellular ice. Survival in extreme conditions requires regulation at transcriptional and translational levels to activate prosurvival pathways. N6-methyladenosine (m6A) methylation is one of the most common RNA modifications, regulating transcript processing and translation by executing important functions that affect regulatory pathways in stress conditions. In the study, regulation of m6A-related proteins in the liver of R. sylvatica was analyzed during 24 h frozen and 8 h thaw conditions. Decreases in the activity of demethylases of 28.44 ± 0.4% and 24.1 ± 0.9% of control values in frozen and thaw tissues, respectively, were observed. Total protein levels of m6A methyltransferase complex components methyltransferase-like 14 and Wilm's tumor associated protein were increased by 1.28-fold and 1.42-fold, respectively, during freezing. Demethylase fat mass and obesity, however, showed a decreasing trend, with a significant decrease in abundance during recovery from frozen conditions. Levels of mRNA degraders YTHDF2 and YTHDC2 also decreased under stress. Overall, increased levels of m6A methylation complex components, and suppressed levels of readers/erasers, provide evidence for the potential role of RNA methylation in freezing survival and its regulation in a hypometabolic state.


Asunto(s)
Metiltransferasas , Ranidae , Animales , Congelación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metilación , Ranidae/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Hígado/metabolismo
9.
Front Zool ; 20(1): 35, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919723

RESUMEN

Extreme environmental conditions at high altitude, such as hypobaric hypoxia, low temperature, and strong UV radiation, pose a great challenge to the survival of animals. Although the mechanisms of adaptation to high-altitude environments have attracted much attention for native plateau species, the underlying metabolic regulation remains unclear. Here, we used a multi-platform metabolomic analysis to compare metabolic profiles of liver between high- and low-altitude populations of toad-headed lizards, Phrynocephalus vlangalii, from the Qinghai-Tibet Plateau. A total of 191 differential metabolites were identified, consisting of 108 up-regulated and 83 down-regulated metabolites in high-altitude lizards as compared with values for low-altitude lizards. Pathway analysis revealed that the significantly different metabolites were associated with carbohydrate metabolism, amino acid metabolism, purine metabolism, and glycerolipid metabolism. Most intermediary metabolites of glycolysis and the tricarboxylic acid cycle were not significantly altered between the two altitudes, but most free fatty acids as well as ß-hydroxybutyric acid were significantly lower in the high-altitude population. This may suggest that high-altitude lizards rely more on carbohydrates as their main energy fuel rather than lipids. Higher levels of phospholipids occurred in the liver of high-altitude populations, suggesting that membrane lipids may undergo adaptive remodeling in response to low-temperature stress at high altitude. In summary, this study demonstrates that metabolic profiles differ substantially between high- and low-altitude lizard populations, and that these differential metabolites and metabolic pathways can provide new insights to reveal mechanisms of adaptation to extreme environments at high altitude.

10.
Mol Cell Biochem ; 478(2): 415-426, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35802222

RESUMEN

NADP-dependent isocitrate dehydrogenase (NADP-IDH, EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate with the concomitant production of NADPH. NADPH plays important roles in many biosynthesis pathways, maintenance of proper oxidation-reduction balance, and protection against oxidative damage. This present study investigated the dynamic nature of NADP-IDH during hibernation by purifying it from the skeletal muscle of Richardson's ground squirrel (Urocitellus richardsonii) and analyzing its structural and functional changes in response to hibernation. Kinetic parameters of purified NADP-IDH from euthermic and hibernating ground squirrel skeletal muscle were characterized at 22 °C and 5 °C. Relative to euthermic muscle, -NADP-IDH in hibernating muscle had a higher affinity for its substrate, isocitrate at 22 °C, whereas at 5 °C, there was a significant decrease in isocitrate affinity. Western blot analysis revealed greater serine and threonine phosphorylation in hibernator NADP-IDH as compared to euthermic NADP-IDH. In addition, Bioinformatic analysis predicted the presence of 18 threonine and 21 serine phosphorylation sites on squirrel NADP-IDH. The structural and functional changes in NADP-IDH indicate the ability of the organism to reduce energy consumption during hibernation, while emphasizing increased NADPH production, and thus antioxidant activity, during torpor arousal cycles.


Asunto(s)
Isocitrato Deshidrogenasa , Músculo Esquelético , Animales , NADP/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Isocitratos/metabolismo , Músculo Esquelético/metabolismo , Sciuridae/metabolismo , Cinética
11.
Cell Biochem Funct ; 41(3): 309-320, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36823992

RESUMEN

The rapid and reversible nature of microRNA (miRNA) transcriptional regulation is ideal for implementing global changes to cellular processes and metabolism, a necessary asset for the freeze-tolerant gray tree frog (Dryophytes versicolor). D. versicolor can freeze up to 42% of its total body water during the winter and then thaw completely upon more favorable conditions of spring. Herein, we examined the freeze-specific miRNA responses in the gray tree frog using RBiomirGS, a bioinformatic tool designed for the analysis of miRNA-seq transcriptomics in non-genome sequenced organisms. We identified 11 miRNAs differentially regulated during freezing (miR-140-3p, miR-181a-5p, miR-206-3p, miR-451a, miR-19a-3p, miR-101-3p, miR-30e-5p, miR-142-3p and -5p, miR-21-5p, and miR-34a-5p). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis suggests these miRNAs play roles in downregulating signaling pathways, apoptosis, and nuclear processes while enhancing ribosomal biogenesis. Overall, these findings point towards miRNA inducing a state of energy conservation by downregulating energy-expensive pathways, while ribosomal biogenesis may lead to prioritization of critical processes for freeze-tolerance survival.


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Transcriptoma , Congelación , Perfilación de la Expresión Génica , Hígado/metabolismo , Anuros/genética , Anuros/metabolismo
12.
Gen Comp Endocrinol ; 339: 114294, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37120097

RESUMEN

Hypoxemia from exposure to intermittent and/or acute environmental hypoxia (lower oxygen concentration) is a severe stressor for many animal species. The response to hypoxia of the hypothalamic-pituitary-adrenal axis (HPA-axis), which culminates in the release of glucocorticoids, has been well-studied in hypoxia-intolerant surface-dwelling mammals. Several group-living (social) subterranean species, including most African mole-rats, are hypoxia-tolerant, likely due to regular exposure to intermittent hypoxia in their underground burrows. Conversely, solitary mole-rat species, lack many adaptive mechanisms, making them less hypoxia-tolerant than the social genera. To date, the release of glucocorticoids in response to hypoxia has not been measured in hypoxia-tolerant mammalian species. Consequently, this study exposed three social African mole-rat species and two solitary mole-rat species to normoxia, or acute hypoxia and then measured their respective plasma glucocorticoid (cortisol) concentrations. Social mole-rats had lower plasma cortisol concentrations under normoxia than the solitary genera. Furthermore, individuals of all three of the social mole-rat species exhibited significantly increased plasma cortisol concentrations after hypoxia, similar to those of hypoxia-intolerant surface-dwelling species. By contrast, individuals of the two solitary species had a reduced plasma cortisol response to acute hypoxia, possibly due to increased plasma cortisol under normoxia. If placed in perspective with other closely related surface-dwelling species, the regular exposure of the social African mole-rats to hypoxia may have reduced the basal levels of the components for the adaptive mechanisms associated with hypoxia exposure, including circulating cortisol levels. Similarly, the influence of body mass on plasma cortisol levels cannot be ignored. This study demonstrates that both hypoxia-tolerant rodents and hypoxia-intolerant terrestrial laboratory-bred rodents may possess similar HPA-axis responses from exposure to hypoxia. Further research is required to confirm the results from this pilot study and to further confirm how the cortisol concentrations may influence responses to hypoxia in African mole-rats.


Asunto(s)
Hidrocortisona , Sistema Hipotálamo-Hipofisario , Animales , Proyectos Piloto , Sistema Hipófiso-Suprarrenal , Hipoxia , Ratas Topo/fisiología , Glucocorticoides
13.
Cryobiology ; 110: 79-85, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36442660

RESUMEN

The wood frog, Rana sylvatica (aka Lithobates sylvaticus) is the main model for studies of natural freeze tolerance among amphibians living in seasonally cold climates. During freezing, ∼65% of total body water can be converted to extracellular ice and this imposes both dehydration and hypoxia/anoxia stresses on cells. The current study analyzed the responses of the alpha subunit of the hypoxia-inducible transcription factor (HIF-1), a crucial oxygen-sensitive regulator of gene expression, to freezing, anoxia or dehydration stresses, examining six tissues of wood frogs (liver, skeletal muscle, brain, heart, kidney, skin). RT-PCR revealed a rapid elevation hif-1α transcript levels within 2 h of freeze initiation in both liver and brain and elevated levels of both mRNA and protein in liver and muscle after 24 h frozen. However, both transcript and protein levels reverted to control values after thawing except for HIF-1 protein in liver that dropped to ∼60% of control. Independent exposures of wood frogs to anoxia or dehydration stresses (two components of freezing) also triggered upregulation of hif-1α transcripts and/or HIF-1α protein in liver and kidney with variable responses in other tissues. The results show active modulation of HIF-1 in response to freezing, anoxia and dehydration stresses and implicate this transcription factor as a contributor to the regulation of metabolic adaptations needed for long term survival of wood frogs in the ischemic frozen state.


Asunto(s)
Criopreservación , Deshidratación , Animales , Congelación , Deshidratación/metabolismo , Criopreservación/métodos , Hipoxia/metabolismo , Ranidae/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo
14.
Cryobiology ; 110: 44-48, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36539050

RESUMEN

The wood frog (Rana Sylvatica) can endure the sub-zero temperatures of winter by freezing up to 65% of total body water as extracellular ice and retreating into a prolonged hypometabolic state. Freeze survival requires the coordination of various adaptations, including a global suppression of metabolic functions and select activation of pro-survival genes. Transcription factors playing roles in metabolism, stress tolerance, and cell proliferation may assist in making survival in a frozen state possible. In this study, the role of Forkhead box 'other' (FOXO) transcription factors in freeze tolerance, and related changes to the insulin pathway, are investigated. Immunoblotting was used to assess total and phosphorylated amounts of FOXO proteins in wood frogs subjected to freezing for 24 h and thawed recovery for 8 h. Levels of active FOXO3 increased in brain, kidney, and liver during freezing and thawing, suggesting a need to maintain or enhance antioxidant defenses under these stresses. Results implicate FOXO involvement in the metabolic regulation of natural freeze tolerance.


Asunto(s)
Criopreservación , Factores de Transcripción , Animales , Congelación , Factores de Transcripción/metabolismo , Criopreservación/métodos , Aclimatación , Ranidae/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-36368609

RESUMEN

This commentary acknowledges the contributions of the Ukrainian biologist, Dr. Volodymyr Lushchak, to the understanding of the physiological adaptive strategy called "Preparation for Oxidative Stress" (POS). In the 1990s, various studies revealed that activities of antioxidant enzymes rose in animals under hypometabolic conditions. These timely observations allowed scientists to propose that this increase could prepare animals for reoxygenation events following the release of oxygen restriction, but in doing so, would trigger oxidative damage, hence the use of the term "preparation". Over next 25 years, the phenomenon was described in detail in more than one hundred studies of animals under conditions of aestivation, hypoxia/anoxia, freezing, severe dehydration, ultraviolet exposure, air exposure of water-breathing animals, salinity stress, and others. The POS phenomenon remained without a mechanistic explanation until 2013, when it was proposed that a small increase in oxyradical formation during hypoxia exposure (in hypoxia-tolerant animals) could activate redox-sensitive transcription factors that, in turn, would initiate transcription and translation of antioxidant enzymes. Dr. Lushchak, who studied goldfish under severe hypoxia in the 1990s, had actually proposed the increased production of oxyradicals under this condition and concluded that it would lead to an upregulation of antioxidant enzymes, the hallmark of the POS strategy. However, his research partner at the time, Dr. Hermes-Lima, thought the idea did not have sufficient evidence to support it and recommended the removal of this explanation. In those days, the main line of thinking was that increased oxyradical formation under hypoxia was "impossible". So, as it turns out, the ideas of Dr. Lushchak were well ahead of his time. It then took >10 years before the biochemical and molecular mechanisms responsible for triggering the POS response were clarified. In the present article, this fascinating history is described to highlight Dr. Lushchak's contributions and insights about the POS theory.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Estrés Oxidativo/fisiología , Oxígeno , Hipoxia , Especies Reactivas de Oxígeno
16.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373302

RESUMEN

The goldenrod gall fly (Eurosta solidaginis) is a well-studied model of insect freeze tolerance. In situations of prolonged winter subzero temperatures, larvae of E. solidaginis accept ice penetration throughout extracellular spaces while protecting the intracellular environment by producing extreme amounts of glycerol and sorbitol as cryoprotectants. Hypometabolism (diapause) is implemented, and energy use is reprioritized to essential pathways. Gene transcription is one energy-expensive process likely suppressed over the winter, in part, due to epigenetic controls. The present study profiled the prevalence of 24 histone H3/H4 modifications of E. solidaginis larvae after 3-week acclimations to decreasing environmental temperatures (5 °C, -5 °C and -15 °C). Using immunoblotting, the data show freeze-mediated reductions (p < 0.05) in seven permissive histone modifications (H3K27me1, H4K20me1, H3K9ac, H3K14ac, H3K27ac, H4K8ac, H3R26me2a). Along with the maintenance of various repressive marks, the data are indicative of a suppressed transcriptional state at subzero temperatures. Elevated nuclear levels of histone H4, but not histone H3, were also observed in response to both cold and freeze acclimation. Together, the present study provides evidence for epigenetic-mediated transcriptional suppression in support of the winter diapause state and freeze tolerance of E. solidaginis.


Asunto(s)
Histonas , Tephritidae , Animales , Histonas/genética , Histonas/metabolismo , Congelación , Frío , Tephritidae/metabolismo , Crioprotectores/farmacología , Crioprotectores/metabolismo , Larva/metabolismo
17.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37762394

RESUMEN

Aestivation is considered to be one of the "purest" hypometabolic states in nature, as it involves aerobic dormancy that can be induced and sustained without complex factors. Animals that undergo aestivation to protect themselves from environmental stressors such as high temperatures, droughts, and food shortages. However, this shift in body metabolism presents new challenges for survival, including oxidative stress upon awakening from aestivation, accumulation of toxic metabolites, changes in energy sources, adjustments to immune status, muscle atrophy due to prolonged immobility, and degeneration of internal organs due to prolonged food deprivation. In this review, we summarize the physiological and metabolic strategies, key regulatory factors, and networks utilized by aestivating animals to address the aforementioned components of aestivation. Furthermore, we present a comprehensive overview of the advancements made in aestivation research across major species, including amphibians, fish, reptiles, annelids, mollusks, and echinoderms, categorized according to their respective evolutionary positions. This approach offers a distinct perspective for comparative analysis, facilitating an understanding of the shared traits and unique features of aestivation across different groups of organisms.


Asunto(s)
Evolución Biológica , Estivación , Animales , Sequías , Equinodermos , Fuentes Generadoras de Energía
18.
Biochem Cell Biol ; 100(2): 171-178, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35104156

RESUMEN

Wood frogs are a few vertebrate species that can survive whole-body freezing. Multiple adaptations support this, including cryoprotectant production (glucose), metabolic rate depression, and selective changes in gene and protein expression to activate pro-survival pathways. The role of DNA methylation machinery (DNA methyltransferases, DNMTs) in regulating nuclear gene expression to support freezing survival has already been established. However, a comparable role for DNMTs in the mitochondria has not been explored in wood frogs. We examined the mitochondrial protein levels of DNMT-1, DNMT-3A, DNMT-3B, and DNMT-3L as well as mitochondrial DNMT activity in the liver and heart to assess the involvement of DNMT in the survival of freezing and dehydration stresses (cellular dehydration being a component of freezing). Our results showed stress- and tissue-specific responses to mitochondrial DNMT-1 in the liver and heart, respectively. During 24 h of freezing and whole-body dehydration, we observed an overall downregulation of mitochondrial DNMT-1, a major protein involved in maintaining methylation levels related to its role in the selective transcription of mitochondrial genes as well as antioxidant response. Tissue-specific responses of protein levels of DNMT-3A, DNMT-3B, DNMT-3L, and DNMT activity in the liver suggested a preference for a higher methylation state in the liver under both freezing and dehydration stress, but not in the heart.


Asunto(s)
Metilación de ADN , Deshidratación , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Deshidratación/genética , Deshidratación/metabolismo , Congelación , Hígado/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Ranidae/metabolismo
19.
J Exp Biol ; 225(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35574675

RESUMEN

Tumor suppressing transcription factor p53 regulates multiple pathways including DNA repair, cell survival, apoptosis and autophagy. Here, we studied the stress-induced activation of p53 in anoxic crayfish (Faxonius virilis). Relative levels of target proteins and mRNAs involved in the DNA damage response were measured in normoxic control and anoxic hepatopancreas and tail muscle. Phosphorylation levels of p53 were assessed using immunoblotting at sites known to be phosphorylated (serine 15 and 37) in response to DNA damage or reduced oxygen signaling. The capacity for DNA binding by phosphorylated p53 (p-p53) was also measured, followed by transcript analysis of a potentially pro-apoptotic downstream target, the etoposide induced (ei24) gene. Following this, both inhibitor (MDM2) and activator (p19-ARF) protein levels in response to low-oxygen stress were studied. The results showed an increase in p-p53 levels during anoxia in both hepatopancreas and tail muscle. Increased transcript levels of ei24 support the activation of p53 under anoxic stress. Cytoplasmic accumulation of Ser15 phosphorylated p53 was observed during anoxia when proteins from cytoplasmic and nuclear fractions were measured. Increased cytoplasmic concentration is known to initiate an apoptotic response, which can be assumed as a preparatory step to prevent autophagy. The results suggest that p53 might play a protective role in crayfish defense against low-oxygen stress. Understanding how anoxia-tolerant organisms are able to protect themselves against DNA damage could provide important clues towards survival under metabolic rate depression and preparation for recovery to minimize damage.


Asunto(s)
Astacoidea , Proteína p53 Supresora de Tumor , Animales , Astacoidea/genética , Astacoidea/metabolismo , Daño del ADN , Agua Dulce , Hipoxia/metabolismo , Oxígeno/metabolismo , Fosforilación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
Biogerontology ; 23(5): 559-570, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35915171

RESUMEN

Every-other-day fasting (EODF) is one type of caloric restriction that is proposed to have significant health benefits, including slowing aging-related processes. The present study evaluated multiple parameters of blood homeostasis comparing mice of different ages and mice on different diet regimes: ad libitum (AL) versus EODF. Hematological and classical biochemical parameters of blood were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice of both sexes subjected either to EODF, or AL feeding. Middle-aged AL males showed a decrease in erythrocyte and total leucocyte counts and an increase in plasma alkaline phosphatase activity, whereas old animals showed a decrease in relative levels of lymphocytes and an increase in relative levels of neutrophils, a decrease in plasma lactate and an increase in total cholesterol levels, compared to young mice. AL-fed females demonstrated higher stability of blood parameters during aging than males did. The EODF regimen did not significantly affect hematological parameters in females but prevented a decline in total leukocyte count with age in males. In both sexes, EODF partially prevented age-associated changes in levels of plasma lactate and cholesterol and activity of alkaline phosphatase. Thus, during normal aging, mice showed a sex-dependent maintenance of blood homeostasis which was not significantly affected by EODF.


Asunto(s)
Ayuno , Longevidad , Envejecimiento , Fosfatasa Alcalina , Animales , Colesterol , Femenino , Lactatos , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA