Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(27): e2322291121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38913905

RESUMEN

Tibetan sheep were introduced to the Qinghai Tibet plateau roughly 3,000 B.P., making this species a good model for investigating genetic mechanisms of high-altitude adaptation over a relatively short timescale. Here, we characterize genomic structural variants (SVs) that distinguish Tibetan sheep from closely related, low-altitude Hu sheep, and we examine associated changes in tissue-specific gene expression. We document differentiation between the two sheep breeds in frequencies of SVs associated with genes involved in cardiac function and circulation. In Tibetan sheep, we identified high-frequency SVs in a total of 462 genes, including EPAS1, PAPSS2, and PTPRD. Single-cell RNA-Seq data and luciferase reporter assays revealed that the SVs had cis-acting effects on the expression levels of these three genes in specific tissues and cell types. In Tibetan sheep, we identified a high-frequency chromosomal inversion that exhibited modified chromatin architectures relative to the noninverted allele that predominates in Hu sheep. The inversion harbors several genes with altered expression patterns related to heart protection, brown adipocyte proliferation, angiogenesis, and DNA repair. These findings indicate that SVs represent an important source of genetic variation in gene expression and may have contributed to high-altitude adaptation in Tibetan sheep.


Asunto(s)
Altitud , Animales , Ovinos/genética , Tibet , Variación Estructural del Genoma , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica , Genoma , Aclimatación/genética
2.
Nature ; 581(7809): 480-485, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461643

RESUMEN

Most proteins associate into multimeric complexes with specific architectures1,2, which often have functional properties such as cooperative ligand binding or allosteric regulation3. No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous α- and ß-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical 'missing link' through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct α- and ß-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein's structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.


Asunto(s)
Evolución Molecular , Hemoglobinas/metabolismo , Regulación Alostérica , Sitios de Unión/genética , Hemo/metabolismo , Hemoglobinas/química , Humanos , Hierro/metabolismo , Modelos Moleculares , Oxígeno/metabolismo , Multimerización de Proteína/genética , Estructura Cuaternaria de Proteína/genética , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
3.
Nature ; 583(7816): E26, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32587402

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
PLoS Genet ; 18(8): e1010323, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35972957

RESUMEN

A growing body of theoretical and experimental evidence suggests that intramolecular epistasis is a major determinant of rates and patterns of protein evolution and imposes a substantial constraint on the evolution of novel protein functions. Here, we examine the role of intramolecular epistasis in the recurrent evolution of resistance to cardiotonic steroids (CTS) across tetrapods, which occurs via specific amino acid substitutions to the α-subunit family of Na,K-ATPases (ATP1A). After identifying a series of recurrent substitutions at two key sites of ATP1A that are predicted to confer CTS resistance in diverse tetrapods, we then performed protein engineering experiments to test the functional consequences of introducing these substitutions onto divergent species backgrounds. In line with previous results, we find that substitutions at these sites can have substantial background-dependent effects on CTS resistance. Globally, however, these substitutions also have pleiotropic effects that are consistent with additive rather than background-dependent effects. Moreover, the magnitude of a substitution's effect on activity does not depend on the overall extent of ATP1A sequence divergence between species. Our results suggest that epistatic constraints on the evolution of CTS-resistant forms of Na,K-ATPase likely depend on a small number of sites, with little dependence on overall levels of protein divergence. We propose that dependence on a limited number sites may account for the observation of convergent CTS resistance substitutions observed among taxa with highly divergent Na,K-ATPases (See S1 Text for Spanish translation).


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Toxinas Biológicas , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética
5.
Am Nat ; 203(6): 726-735, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781524

RESUMEN

AbstractIn the world's highest mountain ranges, uncertainty about the upper elevational range limits of alpine animals represents a critical knowledge gap regarding the environmental limits of life and presents a problem for detecting range shifts in response to climate change. Here we report results of mountaineering mammal surveys in the Central Andes, which led to the discovery of multiple species of mice living at extreme elevations that far surpass previously assumed range limits for mammals. We livetrapped small mammals from ecologically diverse sites spanning >6,700 m of vertical relief, from the desert coast of northern Chile to the summits of the highest volcanoes in the Andes. We used molecular sequence data and whole-genome sequence data to confirm the identities of species that represent new elevational records and to test hypotheses regarding species limits. These discoveries contribute to a new appreciation of the environmental limits of vertebrate life.


Asunto(s)
Altitud , Animales , Ratones/genética , Ratones/fisiología , Chile , Filogenia , Distribución Animal
6.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753505

RESUMEN

Dive capacities of air-breathing vertebrates are dictated by onboard O2 stores, suggesting that physiologic specialization of diving birds such as penguins may have involved adaptive changes in convective O2 transport. It has been hypothesized that increased hemoglobin (Hb)-O2 affinity improves pulmonary O2 extraction and enhances the capacity for breath-hold diving. To investigate evolved changes in Hb function associated with the aquatic specialization of penguins, we integrated comparative measurements of whole-blood and purified native Hb with protein engineering experiments based on site-directed mutagenesis. We reconstructed and resurrected ancestral Hb representing the common ancestor of penguins and the more ancient ancestor shared by penguins and their closest nondiving relatives (order Procellariiformes, which includes albatrosses, shearwaters, petrels, and storm petrels). These two ancestors bracket the phylogenetic interval in which penguin-specific changes in Hb function would have evolved. The experiments revealed that penguins evolved a derived increase in Hb-O2 affinity and a greatly augmented Bohr effect (i.e., reduced Hb-O2 affinity at low pH). Although an increased Hb-O2 affinity reduces the gradient for O2 diffusion from systemic capillaries to metabolizing cells, this can be compensated by a concomitant enhancement of the Bohr effect, thereby promoting O2 unloading in acidified tissues. We suggest that the evolved increase in Hb-O2 affinity in combination with the augmented Bohr effect maximizes both O2 extraction from the lungs and O2 unloading from the blood, allowing penguins to fully utilize their onboard O2 stores and maximize underwater foraging time.


Asunto(s)
Adaptación Fisiológica , Oxígeno/metabolismo , Oxihemoglobinas/metabolismo , Spheniscidae/fisiología , Sustitución de Aminoácidos , Animales , Oxihemoglobinas/química , Oxihemoglobinas/genética , Filogenia , Conformación Proteica , Ingeniería de Proteínas , Spheniscidae/sangre , Spheniscidae/clasificación
7.
J Physiol ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889163

RESUMEN

A key question in biology concerns the extent to which distributional range limits of species are determined by intrinsic limits of physiological tolerance. Here, we use common-garden data for wild rodents to assess whether species with higher elevational range limits typically have higher thermogenic capacities in comparison to closely related lowland species. Among South American leaf-eared mice (genus Phyllotis), mean thermogenic performance is higher in species with higher elevational range limits, but there is little among-species variation in the magnitude of plasticity in this trait. In the North American rodent genus Peromyscus, highland deer mice (Peromyscus maniculatus) have greater thermogenic maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ) than lowland white-footed mice (Peromyscus leucopus) at a level of hypoxia that matches the upper elevational range limit of the former species. In highland deer mice, the enhanced thermogenic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in hypoxia is attributable to a combination of evolved and plastic changes in physiological pathways that govern the transport and utilization of O2 and metabolic substrates. Experiments with Peromyscus mice also demonstrate that exposure to hypoxia during different stages of development elicits plastic changes in cardiorespiratory traits that improve thermogenic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ via distinct physiological mechanisms. Evolved differences in thermogenic capacity provide clues about why some species are able to persist in higher-elevation habitats that lie slightly beyond the tolerable limits of other species. Such differences in environmental tolerance also suggest why some species might be more vulnerable to climate change than others.

8.
Mol Biol Evol ; 39(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36472530

RESUMEN

The recurrent evolution of resistance to cardiotonic steroids (CTS) across diverse animals most frequently involves convergent amino acid substitutions in the H1-H2 extracellular loop of Na+,K+-ATPase (NKA). Previous work revealed that hystricognath rodents (e.g., chinchilla) and pterocliform birds (sandgrouse) have convergently evolved amino acid insertions in the H1-H2 loop, but their functional significance was not known. Using protein engineering, we show that these insertions have distinct effects on CTS resistance in homologs of each of the two species that strongly depend on intramolecular interactions with other residues. Removing the insertion in the chinchilla NKA unexpectedly increases CTS resistance and decreases NKA activity. In the sandgrouse NKA, the amino acid insertion and substitution Q111R both contribute to an augmented CTS resistance without compromising ATPase activity levels. Molecular docking simulations provide additional insight into the biophysical mechanisms responsible for the context-specific mutational effects on CTS insensitivity of the enzyme. Our results highlight the diversity of genetic substrates that underlie CTS insensitivity in vertebrate NKA and reveal how amino acid insertions can alter the phenotypic effects of point mutations at key sites in the same protein domain.


Asunto(s)
Glicósidos Cardíacos , ATPasa Intercambiadora de Sodio-Potasio , Animales , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Aminoácidos/genética , Simulación del Acoplamiento Molecular , Chinchilla/metabolismo , Glicósidos Cardíacos/química , Glicósidos Cardíacos/farmacología , Vertebrados/genética , Vertebrados/metabolismo
9.
Am Nat ; 201(5): 741-754, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130238

RESUMEN

AbstractThe extent to which species ranges reflect intrinsic physiological tolerances is a major question in evolutionary ecology. To date, consensus has been hindered by the limited tractability of experimental approaches across most of the tree of life. Here, we apply a macrophysiological approach to understand how hematological traits related to oxygen transport shape elevational ranges in a tropical biodiversity hot spot. Along Andean elevational gradients, we measured traits that affect blood oxygen-carrying capacity-total and cellular hemoglobin concentration and hematocrit, the volume percentage of red blood cells-for 2,355 individuals of 136 bird species. We used these data to evaluate the influence of hematological traits on elevational ranges. First, we asked whether the sensitivity of hematological traits to changes in elevation is predictive of elevational range breadth. Second, we asked whether variance in hematological traits changed as a function of distance to the nearest elevational range limit. We found that birds showing greater hematological sensitivity had broader elevational ranges, consistent with the idea that a greater acclimatization capacity facilitates elevational range expansion. We further found reduced variation in hematological traits in birds sampled near their elevational range limits and at high absolute elevations, patterns consistent with intensified natural selection, reduced effective population size, or compensatory changes in other cardiorespiratory traits. Our findings suggest that constraints on hematological sensitivity and local genetic adaptation to oxygen availability promote the evolution of the narrow elevational ranges that underpin tropical montane biodiversity.


Asunto(s)
Biodiversidad , Aves , Humanos , Animales , Aves/fisiología , Fenotipo , Oxígeno , Ecología , Altitud
10.
Mol Ecol ; 32(13): 3483-3496, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37073620

RESUMEN

Phenotypic plasticity can play an important role in the ability of animals to tolerate environmental stress, but the nature and magnitude of plastic responses are often specific to the developmental timing of exposure. Here, we examine changes in gene expression in the diaphragm of highland deer mice (Peromyscus maniculatus) in response to hypoxia exposure at different stages of development. In highland deer mice, developmental plasticity in diaphragm function may mediate changes in several respiratory traits that influence aerobic metabolism and performance under hypoxia. We generated RNAseq data from diaphragm tissue of adult deer mice exposed to (1) life-long hypoxia (before conception to adulthood), (2) post-natal hypoxia (birth to adulthood), (3) adult hypoxia (6-8 weeks only during adulthood) or (4) normoxia. We found five suites of co-regulated genes that are differentially expressed in response to hypoxia, but the patterns of differential expression depend on the developmental timing of exposure. We also identified four transcriptional modules that are associated with important respiratory traits. Many of the genes in these transcriptional modules bear signatures of altitude-related selection, providing an indirect line of evidence that observed changes in gene expression may be adaptive in hypoxic environments. Our results demonstrate the importance of developmental stage in determining the phenotypic response to environmental stressors.


Asunto(s)
Hipoxia , Peromyscus , Animales , Peromyscus/genética , Hipoxia/metabolismo , Respiración , Adaptación Fisiológica/genética , Altitud
11.
Proc Natl Acad Sci U S A ; 117(31): 18169-18171, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32675238

RESUMEN

Environmental limits of animal life are invariably revised when the animals themselves are investigated in their natural habitats. Here we report results of a scientific mountaineering expedition to survey the high-altitude rodent fauna of Volcán Llullaillaco in the Puna de Atacama of northern Chile, an effort motivated by video documentation of mice (genus Phyllotis) at a record altitude of 6,205 m. Among numerous trapping records at altitudes of >5,000 m, we captured a specimen of the yellow-rumped leaf-eared mouse (Phyllotis xanthopygus rupestris) on the very summit of Llullaillaco at 6,739 m. This summit specimen represents an altitudinal world record for mammals, far surpassing all specimen-based records from the Himalayas and other mountain ranges. This discovery suggests that we may have generally underestimated the altitudinal range limits and physiological tolerances of small mammals simply because the world's high summits remain relatively unexplored by biologists.


Asunto(s)
Altitud , Ecosistema , Sigmodontinae/fisiología , Animales , Chile
12.
Mol Biol Evol ; 38(7): 2677-2691, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33751123

RESUMEN

Population genomic analyses of high-altitude humans and other vertebrates have identified numerous candidate genes for hypoxia adaptation, and the physiological pathways implicated by such analyses suggest testable hypotheses about underlying mechanisms. Studies of highland natives that integrate genomic data with experimental measures of physiological performance capacities and subordinate traits are revealing associations between genotypes (e.g., hypoxia-inducible factor gene variants) and hypoxia-responsive phenotypes. The subsequent search for causal mechanisms is complicated by the fact that observed genotypic associations with hypoxia-induced phenotypes may reflect second-order consequences of selection-mediated changes in other (unmeasured) traits that are coupled with the focal trait via feedback regulation. Manipulative experiments to decipher circuits of feedback control and patterns of phenotypic integration can help identify causal relationships that underlie observed genotype-phenotype associations. Such experiments are critical for correct inferences about phenotypic targets of selection and mechanisms of adaptation.


Asunto(s)
Adaptación Biológica/genética , Altitud , Hipoxia , Fenotipo , Selección Genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Evolución Biológica , Femenino , Aptitud Genética , Hemoglobinas/metabolismo , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Metagenómica , Consumo de Oxígeno , Fisiología , Embarazo
13.
Mol Biol Evol ; 38(10): 4286-4300, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34037784

RESUMEN

When species are continuously distributed across environmental gradients, the relative strength of selection and gene flow shape spatial patterns of genetic variation, potentially leading to variable levels of differentiation across loci. Determining whether adaptive genetic variation tends to be structured differently than neutral variation along environmental gradients is an open and important question in evolutionary genetics. We performed exome-wide population genomic analysis on deer mice sampled along an elevational gradient of nearly 4,000 m of vertical relief. Using a combination of selection scans, genotype-environment associations, and geographic cline analyses, we found that a large proportion of the exome has experienced a history of altitude-related selection. Elevational clines for nearly 30% of these putatively adaptive loci were shifted significantly up- or downslope of clines for loci that did not bear similar signatures of selection. Many of these selection targets can be plausibly linked to known phenotypic differences between highland and lowland deer mice, although the vast majority of these candidates have not been reported in other studies of highland taxa. Together, these results suggest new hypotheses about the genetic basis of physiological adaptation to high altitude, and the spatial distribution of adaptive genetic variation along environmental gradients.


Asunto(s)
Flujo Génico , Peromyscus , Adaptación Fisiológica/genética , Altitud , Animales , Variación Genética , Genética de Población , Peromyscus/genética
14.
J Exp Biol ; 225(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913467

RESUMEN

Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in the control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and ß-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb-O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland ß-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulation of Hb-O2 affinity, because treatment with efaproxiral (a synthetic drug that acutely reduces Hb-O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in Hb may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport.


Asunto(s)
Altitud , Peromyscus , Animales , Variación Genética , Hemoglobinas/genética , Hipoxia/genética , Ratones , Oxígeno/metabolismo , Peromyscus/genética , Respiración
15.
Nat Rev Genet ; 17(4): 239-50, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26972590

RESUMEN

To what extent is the convergent evolution of protein function attributable to convergent or parallel changes at the amino acid level? The mutations that contribute to adaptive protein evolution may represent a biased subset of all possible beneficial mutations owing to mutation bias and/or variation in the magnitude of deleterious pleiotropy. A key finding is that the fitness effects of amino acid mutations are often conditional on genetic background. This context dependence (epistasis) can reduce the probability of convergence and parallelism because it reduces the number of possible mutations that are unconditionally acceptable in divergent genetic backgrounds. Here, I review factors that influence the probability of replicated evolution at the molecular level.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Proteínas/genética , Adaptación Fisiológica/genética , Sustitución de Aminoácidos , Animales , Epistasis Genética , Aptitud Genética , Pleiotropía Genética , Humanos , Mutación , Filogenia , Proteínas/química , Proteínas/fisiología
16.
PLoS Genet ; 15(11): e1008420, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31697676

RESUMEN

Evolutionary adaptation to extreme environments often requires coordinated changes in multiple intersecting physiological pathways, but how such multi-trait adaptation occurs remains unresolved. Transcription factors, which regulate the expression of many genes and can simultaneously alter multiple phenotypes, may be common targets of selection if the benefits of induced changes outweigh the costs of negative pleiotropic effects. We combined complimentary population genetic analyses and physiological experiments in North American deer mice (Peromyscus maniculatus) to examine links between genetic variation in transcription factors that coordinate physiological responses to hypoxia (hypoxia-inducible factors, HIFs) and multiple physiological traits that potentially contribute to high-altitude adaptation. First, we sequenced the exomes of 100 mice sampled from different elevations and discovered that several SNPs in the gene Epas1, which encodes the oxygen sensitive subunit of HIF-2α, exhibited extreme allele frequency differences between highland and lowland populations. Broader geographic sampling confirmed that Epas1 genotype varied predictably with altitude throughout the western US. We then discovered that Epas1 genotype influences heart rate in hypoxia, and the transcriptomic responses to hypoxia (including HIF targets and genes involved in catecholamine signaling) in the heart and adrenal gland. Finally, we used a demographically-informed selection scan to show that Epas1 variants have experienced a history of spatially varying selection, suggesting that differences in cardiovascular function and gene regulation contribute to high-altitude adaptation. Our results suggest a mechanism by which Epas1 may aid long-term survival of high-altitude deer mice and provide general insights into the role that highly pleiotropic transcription factors may play in the process of environmental adaptation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Fenómenos Fisiológicos Cardiovasculares/genética , Peromyscus/genética , Selección Genética/genética , Adaptación Fisiológica/genética , Altitud , Mal de Altura/genética , Animales , Genética de Población , Genómica , Frecuencia Cardíaca , Humanos , Ratones , Peromyscus/fisiología , Polimorfismo de Nucleótido Simple
17.
BMC Biol ; 19(1): 128, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158035

RESUMEN

BACKGROUND: Complex organismal traits are often the result of multiple interacting genes and sub-organismal phenotypes, but how these interactions shape the evolutionary trajectories of adaptive traits is poorly understood. We examined how functional interactions between cardiorespiratory traits contribute to adaptive increases in the capacity for aerobic thermogenesis (maximal O2 consumption, V̇O2max, during acute cold exposure) in high-altitude deer mice (Peromyscus maniculatus). We crossed highland and lowland deer mice to produce F2 inter-population hybrids, which expressed genetically based variation in hemoglobin (Hb) O2 affinity on a mixed genetic background. We then combined physiological experiments and mathematical modeling of the O2 transport pathway to examine the links between cardiorespiratory traits and V̇O2max. RESULTS: Physiological experiments revealed that increases in Hb-O2 affinity of red blood cells improved blood oxygenation in hypoxia but were not associated with an enhancement in V̇O2max. Sensitivity analyses performed using mathematical modeling showed that the influence of Hb-O2 affinity on V̇O2max in hypoxia was contingent on the capacity for O2 diffusion in active tissues. CONCLUSIONS: These results suggest that increases in Hb-O2 affinity would only have adaptive value in hypoxic conditions if concurrent with or preceded by increases in tissue O2 diffusing capacity. In high-altitude deer mice, the adaptive benefit of increasing Hb-O2 affinity is contingent on the capacity to extract O2 from the blood, which helps resolve controversies about the general role of hemoglobin function in hypoxia tolerance.


Asunto(s)
Altitud , Peromyscus , Animales , Hemoglobinas , Hipoxia/genética , Oxígeno , Termogénesis
18.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R869-R878, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34704846

RESUMEN

In the developing embryos of egg-laying vertebrates, O2 flux takes place across a fixed surface area of the eggshell and the chorioallantoic membrane. In the case of crocodilians, the developing embryo may experience a decrease in O2 flux when the nest becomes hypoxic, which may cause compensatory adjustments in blood O2 transport. However, whether the switch from embryonic to adult hemoglobin isoforms (isoHbs) plays some role in these adjustments is unknown. Here, we provide a detailed characterization of the developmental switch of isoHb synthesis in the American alligator, Alligator mississippiensis. We examined the in vitro functional properties and subunit composition of purified alligator isoHbs expressed during embryonic developmental stages in normoxia and hypoxia (10% O2). We found distinct patterns of isoHb expression in alligator embryos at different stages of development, but these patterns were not affected by hypoxia. Specifically, alligator embryos expressed two main isoHbs: HbI, prevalent at early developmental stages, with a high O2 affinity and high ATP sensitivity, and HbII, prevalent at later stages and identical to the adult protein, with a low O2 affinity and high CO2 sensitivity. These results indicate that whole blood O2 affinity is mainly regulated by ATP in the early embryo and by CO2 and bicarbonate from the late embryo until adult life, but the developmental regulation of isoHb expression is not affected by hypoxia exposure.


Asunto(s)
Caimanes y Cocodrilos/embriología , Embrión no Mamífero/metabolismo , Hemoglobinas/metabolismo , Proteínas de Reptiles/metabolismo , Adenosina Trifosfato/sangre , Animales , Dióxido de Carbono/sangre , Desarrollo Embrionario , Oxígeno/sangre , Isoformas de Proteínas
19.
J Exp Biol ; 224(11): 1-6, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34060605

RESUMEN

Endotherms at high altitude face the combined challenges of cold and hypoxia. Cold increases thermoregulatory costs, and hypoxia may limit both thermogenesis and aerobic exercise capacity. Consequently, in comparisons between closely related highland and lowland taxa, we might expect to observe consistent differences in basal metabolic rate (BMR), maximal metabolic rate (MMR) and aerobic scope. Broad-scale comparative studies of birds reveal no association between BMR and native elevation, and altitude effects on MMR have not been investigated. We tested for altitude-related variation in aerobic metabolism in 10 Andean passerines representing five pairs of closely related species with contrasting elevational ranges. Mass-corrected BMR and MMR were significantly higher in most highland species relative to their lowland counterparts, but there was no uniform elevational trend across all pairs of species. Our results suggest that there is no simple explanation regarding the ecological and physiological causes of elevational variation in aerobic metabolism.


Asunto(s)
Altitud , Metabolismo Basal , Regulación de la Temperatura Corporal , Respiración de la Célula , Termogénesis
20.
J Exp Biol ; 224(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34338300

RESUMEN

Crocodilians are unique among vertebrates in that their hemoglobin (Hb) O2 binding is allosterically regulated by bicarbonate, which forms in red blood cells upon hydration of CO2. Although known for decades, this remarkable mode of allosteric control has not yet been experimentally verified with direct evidence of bicarbonate binding to crocodilian Hb, probably because of confounding CO2-mediated effects. Here, we provide the first quantitative analysis of the separate allosteric effects of CO2 and bicarbonate on purified Hb of the spectacled caiman (Caiman crocodilus). Using thin-layer gas diffusion chamber and Tucker chamber techniques, we demonstrate that both CO2 and bicarbonate bind to Hb with high affinity and strongly decrease O2 saturation of Hb. We propose that both effectors bind to an unidentified positively charged site containing a reactive amino group in the low-O2 affinity T conformation of Hb. These results provide the first experimental evidence that bicarbonate binds directly to crocodilian Hb and promotes O2 delivery independently of CO2. Using the gas diffusion chamber, we observed similar effects in Hbs of a phylogenetically diverse set of other caiman, alligator and crocodile species, suggesting that the unique mode of allosteric regulation by CO2 and bicarbonate evolved >80-100 million years ago in the common ancestor of crocodilians. Our results show a tight and unusual linkage between O2 and CO2 transport in the blood of crocodilians, where the build-up of erytrocytic CO2 and bicarbonate ions during breath-hold diving or digestion facilitates O2 delivery, while Hb desaturation facilitates CO2 transport as protein-bound CO2 and bicarbonate.


Asunto(s)
Caimanes y Cocodrilos , Regulación Alostérica , Animales , Bicarbonatos , Dióxido de Carbono , Hemoglobinas , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA