RESUMEN
Air pollution has been shown to significantly impact human health including cancer. Gastric and upper aerodigestive tract (UADT) cancers are common and increased risk has been associated with smoking and occupational exposures. However, the association with air pollution remains unclear. We pooled European subcohorts (N = 287,576 participants for gastric and N = 297,406 for UADT analyses) and investigated the association between residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone in the warm season (O3w) with gastric and UADT cancer. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. During 5,305,133 and 5,434,843 person-years, 872 gastric and 1139 UADT incident cancer cases were observed, respectively. For gastric cancer, we found no association with PM2.5, NO2 and BC while for UADT the hazard ratios (95% confidence interval) were 1.15 (95% CI: 1.00-1.33) per 5 µg/m3 increase in PM2.5, 1.19 (1.08-1.30) per 10 µg/m3 increase in NO2, 1.14 (1.04-1.26) per 0.5 × 10-5 m-1 increase in BC and 0.81 (0.72-0.92) per 10 µg/m3 increase in O3w. We found no association between long-term ambient air pollution exposure and incidence of gastric cancer, while for long-term exposure to PM2.5, NO2 and BC increased incidence of UADT cancer was observed.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Gástricas , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Dióxido de Nitrógeno/efectos adversos , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/etiología , Incidencia , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisisRESUMEN
Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 µm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5 µg/m3, BC (1.26 (1.03-1.53) per 0.5 × 10- 5/m), NO2 (1.13 (0.93-1.38) per 10 µg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10 µg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/mortalidad , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/inducido químicamente , Masculino , Femenino , Europa (Continente)/epidemiología , Persona de Mediana Edad , Anciano , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/análisis , Material Particulado/efectos adversos , AdultoRESUMEN
BACKGROUND: Risk factors for malignant tumours of the central nervous system (CNS) are largely unknown. METHODS: We pooled six European cohorts (N = 302,493) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) and malignant intracranial CNS tumours defined according to the International Classification of Diseases ICD-9/ICD-10 codes 192.1/C70.0, 191.0-191.9/C71.0-C71.9, 192.0/C72.2-C72.5. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 5,497,514 person-years of follow-up (average 18.2 years), we observed 623 malignant CNS tumours. The results of the fully adjusted linear analyses showed a hazard ratio (95% confidence interval) of 1.07 (0.95, 1.21) per 10 µg/m³ NO2, 1.17 (0.96, 1.41) per 5 µg/m³ PM2.5, 1.10 (0.97, 1.25) per 0.5 10-5m-1 BC, and 0.99 (0.84, 1.17) per 10 µg/m³ O3. CONCLUSIONS: We observed indications of an association between exposure to NO2, PM2.5, and BC and tumours of the CNS. The PM elements were not consistently associated with CNS tumour incidence.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Encefálicas , Ozono , Humanos , Material Particulado/efectos adversos , Dióxido de Nitrógeno , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/etiología , Contaminantes Atmosféricos/efectos adversosRESUMEN
BACKGROUND: Air pollution is a growing concern worldwide, with significant impacts on human health. Multiple myeloma is a type of blood cancer with increasing incidence. Studies have linked air pollution exposure to various types of cancer, including leukemia and lymphoma, however, the relationship with multiple myeloma incidence has not been extensively investigated. METHODS: We pooled four European cohorts (N = 234,803) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), and ozone (O3) and multiple myeloma. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 4,415,817 person-years of follow-up (average 18.8 years), we observed 404 cases of multiple myeloma. The results of the fully adjusted linear analyses showed hazard ratios (95% confidence interval) of 0.99 (0.84, 1.16) per 10 µg/m³ NO2, 1.04 (0.82, 1.33) per 5 µg/m³ PM2.5, 0.99 (0.84, 1.18) per 0.5 10-5 m-1 BCE, and 1.11 (0.87, 1.41) per 10 µg/m³ O3. CONCLUSIONS: We did not observe an association between long-term ambient air pollution exposure and incidence of multiple myeloma.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Mieloma Múltiple , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Mieloma Múltiple/inducido químicamente , Mieloma Múltiple/epidemiología , Dióxido de Nitrógeno/toxicidad , Dióxido de Nitrógeno/análisis , Material Particulado/análisisRESUMEN
BACKGROUND: The evidence linking ambient air pollution to bladder cancer is limited and mixed. METHODS: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders. RESULTS: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93-1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99-1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00-1.16 per 10 ng/m3). CONCLUSIONS: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias de la Vejiga Urinaria , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Incidencia , Masculino , Dióxido de Nitrógeno , Material Particulado/efectos adversos , Enfermedades Raras , Neoplasias de la Vejiga Urinaria/epidemiología , Neoplasias de la Vejiga Urinaria/etiología , ZincRESUMEN
We assessed mortality risks associated with source-specific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 µg/m3 increase) across five identified sources. On a 1 µg/m3 basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Estudios de Cohortes , Exposición a Riesgos Ambientales/análisis , Humanos , Material Particulado/análisisRESUMEN
BACKGROUND: Particulate matter (PM) is classified as a group 1 human carcinogen. Previous experimental studies suggest that particles in diesel exhaust induce oxidative stress, inflammation and DNA damage in kidney cells, but the evidence from population studies linking air pollution to kidney cancer is limited. METHODS: We pooled six European cohorts (N = 302,493) to assess the association of residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) with cancer of the kidney parenchyma. The main exposure model was developed for year 2010. We defined kidney parenchyma cancer according to the International Classification of Diseases 9th and 10th Revision codes 189.0 and C64. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: The participants were followed from baseline (1985-2005) to 2011-2015. A total of 847 cases occurred during 5,497,514 person-years of follow-up (average 18.2 years). Median (5-95%) exposure levels of NO2, PM2.5, BC and O3 were 24.1 µg/m3 (12.8-39.2), 15.3 µg/m3 (8.6-19.2), 1.6 10-5 m-1 (0.7-2.1), and 87.0 µg/m3 (70.3-97.4), respectively. The results of the fully adjusted linear analyses showed a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 0.92, 1.15) per 10 µg/m³ NO2, 1.04 (95% CI: 0.88, 1.21) per 5 µg/m³ PM2.5, 0.99 (95% CI: 0.89, 1.11) per 0.5 10-5 m-1 BCE, and 0.88 (95% CI: 0.76, 1.02) per 10 µg/m³ O3. We did not find associations between any of the elemental components of PM2.5 and cancer of the kidney parenchyma. CONCLUSION: We did not observe an association between long-term ambient air pollution exposure and incidence of kidney parenchyma cancer.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Renales , Ozono , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Carbono/análisis , Carcinógenos/análisis , Cobre/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Europa (Continente)/epidemiología , Humanos , Hierro/análisis , Riñón , Neoplasias Renales/inducido químicamente , Neoplasias Renales/epidemiología , Níquel , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/toxicidad , Ozono/análisis , Material Particulado/análisis , Material Particulado/toxicidad , Potasio/análisis , Silicio , Hollín/análisis , Azufre/análisis , Vanadio , Emisiones de Vehículos/análisis , Zinc/análisisRESUMEN
Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the "Effects of low-level air pollution: A study in Europe" (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2 ), particulate matter with diameter <2.5 µm (PM2.5 ), black carbon (BC), warm-season ozone (O3 ), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 µg/m3 ), PM2.5 (1.12, 0.92-1.36 per 5 µg/m3 ), and BC (1.15, 1.00-1.33 per 0.5 10-5 /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5 . Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2 . Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards.
Asunto(s)
Contaminación del Aire/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Neoplasias Hepáticas/etiología , Adulto , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Europa (Continente)/epidemiología , Femenino , Humanos , Incidencia , Neoplasias Hepáticas/epidemiología , Masculino , Persona de Mediana Edad , Tamaño de la Partícula , Material Particulado/toxicidad , Modelos de Riesgos ProporcionalesRESUMEN
BACKGROUND: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, although evidence is still insufficient. Within the multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we examined the associations of long-term exposures to particulate matter with a diameter <2.5â µm (PM2.5), nitrogen dioxide (NO2) and black carbon (BC) with asthma incidence in adults. METHODS: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land-use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders. RESULTS: Of 98â326 participants, 1965 developed asthma during a mean follow-up of 16.6â years. We observed associations in fully adjusted models with hazard ratios of 1.22 (95% CI 1.04-1.43) per 5â µg·m-3 for PM2.5, 1.17 (95% CI 1.10-1.25) per 10â µg·m-3 for NO2 and 1.15 (95% CI 1.08-1.23) per 0.5×10-5â m-1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the European Union and US limit values and possibly World Health Organization guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration-response curves showed no evidence of a threshold. CONCLUSIONS: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Niño , Exposición a Riesgos Ambientales/análisis , Europa (Continente) , Humanos , Incidencia , Material Particulado/análisis , SueciaRESUMEN
BACKGROUND: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the "Effects of Low-level Air Pollution: A Study in Europe" (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence. METHODS: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). RESULTS: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m3 PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m3 PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m3 PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative. CONCLUSIONS: Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Pulmonares , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis , Europa (Continente)/epidemiología , Humanos , Incidencia , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Material Particulado/análisisRESUMEN
INTRODUCTION: Epidemiological cohort studies have consistently found associations between long-term exposure to outdoor air pollution and a range of morbidity and mortality endpoints. Recent evaluations by the World Health Organization and the Global Burden of Disease study have suggested that these associations may be nonlinear and may persist at very low concentrations. Studies conducted in North America in particular have suggested that associations with mortality persisted at concentrations of particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) well below current air quality standards and guidelines. The uncertainty about the shape of the concentration-response function at the low end of the concentration distribution, related to the scarcity of observations in the lowest range, was the basis of the current project. Previous studies have focused on PM2.5, but increasingly associations with nitrogen dioxide (NO2) are being reported, particularly in studies that accounted for the fine spatial scale variation of NO2. Very few studies have evaluated the effects of long-term exposure to low concentrations of ozone (O3). Health effects of black carbon (BC), representing primary combustion particles, have not been studied in most large cohort studies of PM2.5. Cohort studies assessing health effects of particle composition, including elements from nontailpipe traffic emissions (iron, copper, and zinc) and secondary aerosol (sulfur) have been few in number and reported inconsistent results. The overall objective of our study was to investigate the shape of the relationship between long-term exposure to four pollutants (PM2.5, NO2, BC, and O3) and four broad health effect categories using a number of different methods to characterize the concentration-response function (i.e., linear, nonlinear, or threshold). The four health effect categories were (1) natural- and cause-specific mortality including cardiovascular and nonmalignant as well as malignant respiratory and diabetes mortality; and morbidity measured as (2) coronary and cerebrovascular events; (3) lung cancer incidence; and (4) asthma and chronic obstructive pulmonary disease (COPD) incidence. We additionally assessed health effects of PM2.5 composition, specifically the copper, iron, zinc, and sulfur content of PM2,5. METHODS: We focused on analyses of health effects of air pollutants at low concentrations, defined as less than current European Union (EU) Limit Values, U.S. Environmental Protection Agency (U.S. EPA), National Ambient Air Quality Standards (NAAQS), and/or World Health Organization (WHO) Air Quality Guideline values for PM2.5, NO2, and O3. We address the health effects at low air pollution levels by performing new analyses within selected cohorts of the ESCAPE study (European Study of Cohorts for Air Pollution Effects; Beelen et al. 2014a) and within seven very large European administrative cohorts. By combining well-characterized ESCAPE cohorts and large administrative cohorts in one study the strengths and weaknesses of each approach can be addressed. The large administrative cohorts are more representative of national or citywide populations, have higher statistical power, and can efficiently control for area-level confounders, but have fewer possibilities to control for individual-level confounders. The ESCAPE cohorts have detailed information on individual confounders, as well as country-specific information on area-level confounding. The data from the seven included ESCAPE cohorts and one additional non-ESCAPE cohort have been pooled and analyzed centrally. More than 300,000 adults were included in the pooled cohort from existing cohorts in Sweden, Denmark, Germany, the Netherlands, Austria, France, and Italy. Data from the administrative cohorts have been analyzed locally, without transfer to a central database. Privacy regulations prevented transfer of data from administrative cohorts to a central database. More than 28 million adults were included from national administrative cohorts in Belgium, Denmark, England, the Netherlands, Norway, and Switzerland as well as an administrative cohort in Rome, Italy. We developed central exposure assessment using Europewide hybrid land use regression (LUR) models, which incorporated European routine monitoring data for PM2.5, NO2, and O3, and ESCAPE monitoring data for BC and PM2.5 composition, land use, and traffic data supplemented with satellite observations and chemical transport model estimates. For all pollutants, we assessed exposure at a fine spatial scale, 100 × 100 m grids. These models have been applied to individual addresses of all cohorts including the administrative cohorts. In sensitivity analyses, we applied the PM2.5 models developed within the companion HEI-funded Canadian MAPLE study (Brauer et al. 2019) and O3 exposures on a larger spatial scale for comparison with previous studies. Identification of outcomes included linkage with mortality, cancer incidence, hospital discharge registries, and physician-based adjudication of cases. We analyzed natural-cause, cardiovascular, ischemic heart disease, stroke, diabetes, cardiometabolic, respiratory, and COPD mortality. We also analyzed lung cancer incidence, incidence of coronary and cerebrovascular events, and incidence of asthma and COPD (pooled cohort only). We applied the Cox proportional hazard model with increasing control for individual- and area-level covariates to analyze the associations between air pollution and mortality and/or morbidity for both the pooled cohort and the individual administrative cohorts. Age was used as the timescale because of evidence that this results in better adjustment for potential confounding by age. Censoring occurred at the time of the event of interest, death from other causes, emigration, loss to follow-up for other reasons, or at the end of follow-up, whichever came first. A priori we specified three confounder models, following the modeling methods of the ESCAPE study. Model 1 included only age (time axis), sex (as strata), and calendar year of enrollment. Model 2 added individual-level variables that were consistently available in the cohorts contributing to the pooled cohort or all variables available in the administrative cohorts, respectively. Model 3 further added area-level socioeconomic status (SES) variables. A priori model 3 was selected as the main model. All analyses in the pooled cohort were stratified by subcohort. All analyses in the administrative cohorts accounted for clustering of the data in neighborhoods by adjusting the variance of the effect estimates. The main exposure variable we analyzed was derived from the Europewide hybrid models based on 2010 monitoring data. Sensitivity analyses were conducted using earlier time periods, time-varying exposure analyses, local exposure models, and the PM2.5 models from the Canadian MAPLE project. We first specified linear single-pollutant models. Two-pollutant models were specified for all combinations of the four main pollutants. Two-pollutant models for particle composition were analyzed with PM2.5 and NO2 as the second pollutant. We then investigated the shape of the concentration-response function using natural splines with two, three, and four degrees of freedom; penalized splines with the degrees of freedom determined by the algorithm and shape-constrained health impact functions (SCHIF) using confounder model 3. Additionally, we specified linear models in subsets of the concentration range, defined by removing concentrations above a certain value from the analysis, such as for PM2.5 25 µg/m3 (EU limit value), 20, 15, 12 µg/m3 (U.S. EPA National Ambient Air Quality Standard), and 10 µg/m3 (WHO Air Quality Guideline value). Finally, threshold models were evaluated to investigate whether the associations persisted below specific concentration values. For PM2.5, we evaluated 10, 7.5, and 5 µg/m3 as potential thresholds. Performance of threshold models versus the corresponding no-threshold linear model were evaluated using the Akaike information criterion (AIC). RESULTS: In the pooled cohort, virtually all subjects in 2010 had PM2.5 and NO2 annual average exposures below the EU limit values (25 µg/m3 and 40 µg/m3, respectively). More than 50,000 had a residential PM2.5 exposure below the U.S. EPA NAAQS (12 µg/m3). More than 25,000 subjects had a residential PM2.5 exposure below the WHO guideline (10 µg/m3). We found significant positive associations between PM2.5, NO2, and BC and natural-cause, respiratory, cardiovascular, and diabetes mortality. In our main model, the hazard ratios (HRs) (95% [confidence interval] CI) were 1.13 (CI = 1.11, 1.16) for an increase of 5 µg/m3 PM2.5, 1.09 (CI = 1.07, 1.10) for an increase of 10 µg/m3 NO2, and 1.08 (CI = 1.06, 1.10) for an increase of 0.5 × 10-5/m BC for natural-cause mortality. The highest HRs were found for diabetes mortality. Associations with O3 were negative, both in the fine spatial scale of the main ELAPSE model and in large spatial scale exposure models. For PM2.5, NO2, and BC, we generally observed a supralinear association with steeper slopes at low exposures and no evidence of a concentration below which no association was found. Subset analyses further confirmed that these associations remained at low levels: below 10 µg/m3 for PM2.5 and 20 µg/m3 for NO2. HRs were similar to the full cohort HRs for subjects with exposures below the EU limit values for PM2.5 and NO2, the U.S. NAAQS values for PM2.5, and the WHO guidelines for PM2.5 and NO2. The mortality associations were robust to alternative specifications of exposure, including different time periods, PM2.5 from the MAPLE project, and estimates from the local ESCAPE model. Time-varying exposure natural spline analyses confirmed associations at low pollution levels. HRs in two-pollutant models were attenuated but remained elevated and statistically significant for PM2.5 and NO2. In two-pollutant models of PM2.5 and NO2 HRs for natural-cause mortality were 1.08 (CI = 1.05, 1.11) for PM2.5 and 1.05 (CI = 1.03, 1.07) for NO2. Associations with O3 were attenuated but remained negative in two-pollutant models with NO2, BC, and PM2.5. We found significant positive associations between PM2.5, NO2, and BC and incidence of stroke and asthma and COPD hospital admissions. Furthermore, NO2 was significantly related to acute coronary heart disease and PM2.5 was significantly related to lung cancer incidence. We generally observed linear to supralinear associations with no evidence of a threshold, with the exception of the association between NO2 and acute coronary heart disease, which was sublinear. Subset analyses documented that associations remained even with PM2.5 below 20 µg/m3 and possibly 12 µg/m3. Associations remained even when NO2 was below 30 µg/m3 and in some cases 20 µg/m3. In two-pollutant models, NO2 was most consistently associated with acute coronary heart disease, stroke, asthma, and COPD hospital admissions. PM2.5 was not associated with these outcomes in two-pollutant models with NO2. PM2.5 was the only pollutant that was associated with lung cancer incidence in two-pollutant models. Associations with O3 were negative though generally not statistically significant. In the administrative cohorts, virtually all subjects in 2010 had PM2.5 and NO2 annual average exposures below the EU limit values. More than 3.9 million subjects had a residential PM2.5 exposure below the U.S. EPA NAAQS (12 µg/m3) and more than 1.9 million had residential PM2.5 exposures below the WHO guideline (10 µg/m3). We found significant positive associations between PM2.5, NO2, and BC and natural-cause, respiratory, cardiovascular, and lung cancer mortality, with moderate to high heterogeneity between cohorts. We found positive but statistically nonsignificant associations with diabetes mortality. In our main model meta-analysis, the HRs (95% CI) for natural-cause mortality were 1.05 (CI = 1.02, 1.09) for an increase of 5 µg/m3 PM2.5, 1.04 (CI = 1.02, 1.07) for an increase of 10 µg/m3 NO2, and 1.04 (CI = 1.02, 1.06) for an increase of 0.5 × 10-5/m BC, and 0.95 (CI = 0.93, 0.98) for an increase of 10 µg/m3 O3. The shape of the concentration-response functions differed between cohorts, though the associations were generally linear to supralinear, with no indication of a level below which no associations were found. Subset analyses documented that these associations remained at low levels: below 10 µg/m3 for PM2.5 and 20 µg/m3 for NO2. BC and NO2 remained significantly associated with mortality in two-pollutant models with PM2.5 and O3. The PM2.5 HR attenuated to unity in a two-pollutant model with NO2. The negative O3 association was attenuated to unity and became nonsignificant. The mortality associations were robust to alternative specifications of exposure, including time-varying exposure analyses. Time-varying exposure natural spline analyses confirmed associations at low pollution levels. Effect estimates in the youngest participants (<65 years at baseline) were much larger than in the elderly (>65 years at baseline). Effect estimates obtained with the ELAPSE PM2.5 model did not differ from the MAPLE PM2.5 model on average, but in individual cohorts, substantial differences were found. CONCLUSIONS: Long-term exposure to PM2.5, NO2, and BC was positively associated with natural-cause and cause-specific mortality in the pooled cohort and the administrative cohorts. Associations were found well below current limit values and guidelines for PM2.5 and NO2. Associations tended to be supralinear, with steeper slopes at low exposures with no indication of a threshold. Two-pollutant models documented the importance of characterizing the ambient mixture with both NO2 and PM2.5. We mostly found negative associations with O3. In two-pollutant models with NO2, the negative associations with O3 were attenuated to essentially unity in the mortality analysis of the administrative cohorts and the incidence analyses in the pooled cohort. In the mortality analysis of the pooled cohort, significant negative associations with O3 remained in two-pollutant models. Long-term exposure to PM2.5, NO2, and BC was also positively associated with morbidity outcomes in the pooled cohort. For stroke, asthma, and COPD, positive associations were found for PM2.5, NO2, and BC. For acute coronary heart disease, an increased HR was observed for NO2. For lung cancer, an increased HR was found only for PM2.5. Associations mostly showed steeper slopes at low exposures with no indication of a threshold.
Asunto(s)
Contaminantes Atmosféricos , Asma , Enfermedad Coronaria , Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Accidente Cerebrovascular , Adulto , Anciano , Contaminantes Atmosféricos/efectos adversos , Canadá , Cobre/análisis , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Incidencia , Dióxido de Nitrógeno/efectos adversos , Hollín/análisis , Azufre/análisis , Estados Unidos , Zinc/análisisRESUMEN
We developed Europe-wide models of long-term exposure to eight elements (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in particulate matter with diameter <2.5 µm (PM2.5) using standardized measurements for one-year periods between October 2008 and April 2011 in 19 study areas across Europe, with supervised linear regression (SLR) and random forest (RF) algorithms. Potential predictor variables were obtained from satellites, chemical transport models, land-use, traffic, and industrial point source databases to represent different sources. Overall model performance across Europe was moderate to good for all elements with hold-out-validation R-squared ranging from 0.41 to 0.90. RF consistently outperformed SLR. Models explained within-area variation much less than the overall variation, with similar performance for RF and SLR. Maps proved a useful additional model evaluation tool. Models differed substantially between elements regarding major predictor variables, broadly reflecting known sources. Agreement between the two algorithm predictions was generally high at the overall European level and varied substantially at the national level. Applying the two models in epidemiological studies could lead to different associations with health. If both between- and within-area exposure variability are exploited, RF may be preferred. If only within-area variability is used, both methods should be interpreted equally.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Europa (Continente) , Modelos Lineales , Material Particulado/análisis , Zinc/análisisRESUMEN
INTRODUCTION: In epidemiological studies, exposure to green space is inconsistently associated with being overweight and physical activity, possibly because studies differ widely in their definition of green space exposure, inclusion of important confounders, study population and data analysis. OBJECTIVES: We evaluated whether the association of green space with being overweight and physical activity depended upon definition of greenspace. METHODS: We conducted a cross-sectional study using data from a Dutch national health survey of 387,195 adults. Distance to the nearest park entrance and surrounding green space, based on the Normalized Difference Vegetation Index (NDVI) or a detailed Dutch land-use database (TOP10NL), was calculated for each residential address. We used logistic regression analyses to study the association of green space exposure with being overweight and being moderately or vigorously physically active outdoors at least 150min/week (self-reported). To study the shape of the association, we specified natural splines and quintiles. RESULTS: The distance to the nearest park entrance was not associated with being overweight or outdoor physical activity. Associations of surrounding green space with being overweight or outdoor physical activity were highly non-linear. For NDVI surrounding greenness, we observed significantly decreased odds of being overweight [300m buffer, odds ratio (OR) = 0.88; 95% CI: 0.86, 0.91] and increased odds for outdoor physical activity [300m buffer, OR = 1.14; 95% CI: 1.10, 1.17] in the highest quintile compared to the lowest quintile. For TOP10NL surrounding green space, associations were mostly non-significant. Associations were generally stronger for subjects living in less urban areas and for the smaller buffers. CONCLUSION: Associations of green space with being overweight and outdoor physical activity differed considerably between different green space definitions. Associations were strongest for NDVI surrounding greenness.
Asunto(s)
Ambiente , Ejercicio Físico , Sobrepeso/epidemiología , Características de la Residencia , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Emigrantes e Inmigrantes/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Sobrepeso/etnología , Sobrepeso/etiología , Adulto JovenRESUMEN
BACKGROUND: Cohorts based on administrative data have size advantages over individual cohorts in investigating air pollution risks, but often lack in-depth information on individual risk factors related to lifestyle. If there is a correlation between lifestyle and air pollution, omitted lifestyle variables may result in biased air pollution risk estimates. Correlations between lifestyle and air pollution can be induced by socio-economic status affecting both lifestyle and air pollution exposure. OBJECTIVES: Our overall aim was to assess potential confounding by missing lifestyle factors on air pollution mortality risk estimates. The first aim was to assess associations between long-term exposure to several air pollutants and lifestyle factors. The second aim was to assess whether these associations were sensitive to adjustment for individual and area-level socioeconomic status (SES), and whether they differed between subgroups of the population. Using the obtained air pollution-lifestyle associations and indirect adjustment methods, our third aim was to investigate the potential bias due to missing lifestyle information on air pollution mortality risk estimates in administrative cohorts. METHODS: We used a recent Dutch national health survey of 387,195 adults to investigate the associations of PM10, PM2.5, PM2.5-10, PM2.5 absorbance, OPDTT, OPESR and NO2 annual average concentrations at the residential address from land use regression models with individual smoking habits, alcohol consumption, physical activity and body mass index. We assessed the associations with and without adjustment for neighborhood and individual SES characteristics typically available in administrative data cohorts. We illustrated the effect of including lifestyle information on the air pollution mortality risk estimates in administrative cohort studies using a published indirect adjustment method. RESULTS: Current smoking and alcohol consumption were generally positively associated with air pollution. Physical activity and overweight were negatively associated with air pollution. The effect estimates were small (mostly <5% of the air pollutant standard deviations). Direction and magnitude of the associations depended on the pollutant, use of continuous vs. categorical scale of the lifestyle variable, and level of adjustment for individual and area-level SES. Associations further differed between subgroups (age, sex) in the population. Despite the small associations between air pollution and smoking intensity, indirect adjustment resulted in considerable changes of air pollution risk estimates for cardiovascular and especially lung cancer mortality. CONCLUSIONS: Individual lifestyle-related risk factors were weakly associated with long-term exposure to air pollution in the Netherlands. Indirect adjustment for missing lifestyle factors in administrative data cohort studies may substantially affect air pollution mortality risk estimates.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales , Estilo de Vida , Mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Estilo de Vida/etnología , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Material Particulado/análisis , Medición de Riesgo , Clase Social , Adulto JovenRESUMEN
INTRODUCTION: We evaluated associations between three a-cellular measures of the oxidative potential (OP) of particulate matter (PM) and acute health effects. METHODS: We exposed 31 volunteers for 5â h to ambient air pollution at five locations: an underground train station, two traffic sites, a farm and an urban background site. Each volunteer visited at least three sites. We conducted health measurements before exposure, 2â h after exposure and the next morning. We measured air pollution on site and characterised the OP of PM2.5 and PM10 using three a-cellular assays; dithiotreitol (OP(DTT)), electron spin resonance (OP(ESR)) and ascorbic acid depletion (OP(AA)). RESULTS: In single-pollutant models, all measures of OP were significantly associated with increases in fractional exhaled nitric oxide and increases in interleukin-6 in nasal lavage 2â h after exposure. These OP associations remained significant after adjustment for co-pollutants when only the four outdoor sites were included, but lost significance when measurements at the underground site were included. Other health end points including lung function and vascular inflammatory and coagulation parameters in blood were not consistently associated with OP. CONCLUSIONS: We found significant associations between three a-cellular measures of OP of PM and markers of airway and nasal inflammation. However, consistency of these effects in two-pollutant models depended on how measurements at the underground site were considered. Lung function and vascular inflammatory and coagulation parameters in blood were not consistently associated with OP. Our study, therefore, provides limited support for a role of OP in predicting acute health effects of PM in healthy young adults.
Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Interleucina-6/análisis , Óxido Nítrico/análisis , Estrés Oxidativo , Material Particulado/toxicidad , Rinitis/metabolismo , Adulto , Ácido Ascórbico/análisis , Biomarcadores , Pruebas Respiratorias , Proteína C-Reactiva/metabolismo , Ciudades , Ditiotreitol/análisis , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Fibrinógeno/metabolismo , Volumen Espiratorio Forzado , Humanos , Radical Hidroxilo/análisis , Interleucina-6/sangre , Lactoferrina/análisis , Masculino , Líquido del Lavado Nasal/química , Material Particulado/química , Inhibidor 1 de Activador Plasminogénico/sangre , Recuento de Plaquetas , Vías Férreas , Rinitis/sangre , Activador de Tejido Plasminógeno/sangre , Capacidad Vital , Adulto Joven , Factor de von Willebrand/metabolismoRESUMEN
Studies have linked air pollution exposure to cardiovascular health effects, but it is not clear which components drive these effects. We examined the associations between air pollution exposure and circulating white blood cell (WBC) counts in humans. To investigate independent contributions of particulate matter (PM) characteristics, we exposed 31 healthy volunteers at five locations with high contrast and reduced correlations amongst pollutant components: two traffic sites, an underground train station, a farm and an urban background site. Each volunteer visited at least three sites and was exposed for 5 h with intermittent exercise. Exposure measurements on-site included PM mass and number concentration, oxidative potential (OP), elemental- and organic carbon, metals, O3 and NO2. Total and differential WBC counts were performed on blood collected before and 2 and 18 h post-exposure (PE). Changes in total WBC counts (2 and 18 h PE), number of neutrophils (2 h PE) and monocytes (18 h PE) were positively associated with PM characteristics that were high at the underground site. These time-dependent changes reflect an inflammatory response, but the characteristic driving this effect could not be isolated. Negative associations were observed for NO2 with lymphocytes and eosinophils. These associations were robust and did not change after adjustment for a large suite of PM characteristics, suggesting an independent effect of NO2. We conclude that short-term air pollution exposure at real-world locations can induce changes in WBC counts in healthy subjects. Future studies should indicate if air pollution exposure-induced changes in blood cell counts results in adverse cardiovascular effects in susceptible individuals.
Asunto(s)
Contaminantes Atmosféricos/toxicidad , Exposición por Inhalación , Leucocitos/efectos de los fármacos , Dióxido de Nitrógeno/toxicidad , Ozono/toxicidad , Material Particulado/toxicidad , Adulto , Contaminantes Atmosféricos/química , Monitoreo del Ambiente , Femenino , Humanos , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Recuento de Leucocitos , Masculino , Países Bajos , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Material Particulado/química , Adulto JovenRESUMEN
Leukemia and lymphoma are the two most common forms of hematologic malignancy, and their etiology is largely unknown. Pathophysiological mechanisms suggest a possible association with air pollution, but little empirical evidence is available. We aimed to investigate the association between long-term residential exposure to outdoor air pollution and risk of leukemia and lymphoma. We pooled data from four cohorts from three European countries as part of the "Effects of Low-level Air Pollution: a Study in Europe" (ELAPSE) collaboration. We used Europe-wide land use regression models to assess annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) at residences. We also estimated concentrations of PM2.5 elemental components: copper (Cu), iron (Fe), zinc (Zn); sulfur (S); nickel (Ni), vanadium (V), silicon (Si) and potassium (K). We applied Cox proportional hazards models to investigate the associations. Among the study population of 247,436 individuals, 760 leukemia and 1122 lymphoma cases were diagnosed during 4,656,140 person-years of follow-up. The results showed a leukemia hazard ratio (HR) of 1.13 (95% confidence intervals [CI]: 1.01-1.26) per 10 µg/m3 NO2, which was robust in two-pollutant models and consistent across the four cohorts and according to smoking status. Sex-specific analyses suggested that this association was confined to the male population. Further, the results showed increased lymphoma HRs for PM2.5 (HR = 1.16; 95% CI: 1.02-1.34) and potassium content of PM2.5, which were consistent in two-pollutant models and according to sex. Our results suggest that air pollution at the residence may be associated with adult leukemia and lymphoma.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Leucemia , Linfoma , Adulto , Femenino , Humanos , Masculino , Dióxido de Nitrógeno/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/análisis , Contaminantes Ambientales/análisis , Leucemia/inducido químicamente , Leucemia/epidemiología , Linfoma/inducido químicamente , Linfoma/epidemiología , Potasio/análisis , Contaminantes Atmosféricos/análisisRESUMEN
It is unclear whether cancers of the upper aerodigestive tract (UADT) and gastric cancer are related to air pollution, due to few studies with inconsistent results. The effects of particulate matter (PM) may vary across locations due to different source contributions and related PM compositions, and it is not clear which PM constituents/sources are most relevant from a consideration of overall mass concentration alone. We therefore investigated the association of UADT and gastric cancers with PM2.5 elemental constituents and sources components indicative of different sources within a large multicentre population based epidemiological study. Cohorts with at least 10 cases per cohort led to ten and eight cohorts from five countries contributing to UADT- and gastric cancer analysis, respectively. Outcome ascertainment was based on cancer registry data or data of comparable quality. We assigned home address exposure to eight elemental constituents (Cu, Fe, K, Ni, S, Si, V and Zn) estimated from Europe-wide exposure models, and five source components identified by absolute principal component analysis (APCA). Cox regression models were run with age as time scale, stratified for sex and cohort and adjusted for relevant individual and neighbourhood level confounders. We observed 1139 UADT and 872 gastric cancer cases during a mean follow-up of 18.3 and 18.5 years, respectively. UADT cancer incidence was associated with all constituents except K in single element analyses. After adjustment for NO2, only Ni and V remained associated with UADT. Residual oil combustion and traffic source components were associated with UADT cancer persisting in the multiple source model. No associations were found for any of the elements or source components and gastric cancer incidence. Our results indicate an association of several PM constituents indicative of different sources with UADT but not gastric cancer incidence with the most robust evidence for traffic and residual oil combustion.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Gástricas , Humanos , Material Particulado/análisis , Neoplasias Gástricas/inducido químicamente , Neoplasias Gástricas/epidemiología , Incidencia , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisisRESUMEN
OBJECTIVES: To investigate which air pollution characteristics are associated with biomarkers for acute nasal airway inflammation in healthy subjects. We hypothesised that associations would be strongest for oxidative potential (OP) of particles. METHODS: 31 volunteers were exposed to ambient air pollution at five sites in The Netherlands: two traffic sites, an underground train station, a farm and an urban background site. Each subject visited at least three sites between March and October 2009 and was exposed for 5 h per visit including exercise for 20 min every hour (h). Air pollution measurements during this 5-h-period included particulate matter (PM) mass concentration, elemental composition, elemental and organic carbon (OC), particle number concentration, OP, endotoxins, O3 and NO2. Pro-inflammatory biomarkers were measured before, 2 and 18 h postexposure, including cytokine IL-6 and IL-8, protein and lactoferrin in nasal lavage (NAL) as well as IL-6 in blood. One- and two-pollutant mixed models were used to analyse associations between exposure and changes in biomarkers. RESULTS: In two-pollutant models, cytokines in NAL were positively associated with OC, endotoxin and NO2; protein was associated with NO2; and lactoferrin was associated with all PM characteristics that were high at the underground site. In blood, associations with OC and endotoxin were negative. CONCLUSIONS: We observed no consistent effects in two-pollutant models for PM mass concentration and OP. Instead, we found consistent associations with nasal inflammatory markers for other PM characteristics, specifically OC, endotoxin and NO2.
Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Inflamación/inducido químicamente , Exposición por Inhalación/efectos adversos , Material Particulado/efectos adversos , Rinitis/inducido químicamente , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Biomarcadores/sangre , Carbono/efectos adversos , Carbono/análisis , Endotoxinas/efectos adversos , Endotoxinas/análisis , Ejercicio Físico , Femenino , Humanos , Inflamación/sangre , Mediadores de Inflamación/sangre , Interleucinas/sangre , Lactoferrina/efectos adversos , Lactoferrina/análisis , Masculino , Países Bajos , Óxido Nítrico/efectos adversos , Óxido Nítrico/análisis , Oxidación-Reducción , Estrés Oxidativo , Material Particulado/análisis , Proteínas/efectos adversos , Proteínas/análisis , Rinitis/sangre , Adulto JovenRESUMEN
OBJECTIVES: Increases in ambient particulate matter (PM) have been associated with an elevated risk of stroke, myocardial ischaemia and coronary heart disease, with activation of blood coagulation likely playing an important role. PM-mediated activation of two major activation pathways of coagulation provides a potential mechanism for the observed association between PM and cardiovascular disease. However, it remains unclear which specific characteristics and components of air pollution are responsible. METHODS: In order to investigate those characteristics and components, we semiexperimentally exposed healthy adult volunteers at five different locations with increased contrasts and reduced correlations among PM characteristics. Volunteers were exposed for 5 h, exercising intermittently, 3-7 times at different sites from March to October 2009. On site, we measured PM mass and number concentration, its oxidative potential (OP), content of elemental/organic carbon, trace metals, sulphate, nitrate and gaseous pollutants (ozone, nitrogen oxides). Before and 2 and 18 h after exposure we sampled blood from the participants and measured thrombin generation using the calibrated automated thrombogram. RESULTS: We found that thrombin generation increases in the intrinsic (FXII-mediated) blood coagulation pathway in relation to ambient air pollution exposure. The associations with NO2, nitrate and sulphate were consistent and robust, insensitive to adjustment for other pollutants. The associations with tissue factor-mediated thrombogenicity were not very consistent. CONCLUSIONS: Ex vivo thrombin generation was associated with exposure to NO2, nitrate and sulphate, but not PM mass, PM OP or other measured air pollutants.