Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 451(1): 69-79, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23256780

RESUMEN

FosB is a divalent-metal-dependent thiol-S-transferase implicated in fosfomycin resistance among many pathogenic Gram-positive bacteria. In the present paper, we describe detailed kinetic studies of FosB from Staphylococcus aureus (SaFosB) that confirm that bacillithiol (BSH) is its preferred physiological thiol substrate. SaFosB is the first to be characterized among a new class of enzyme (bacillithiol-S-transferases), which, unlike glutathione transferases, are distributed among many low-G+C Gram-positive bacteria that use BSH instead of glutathione as their major low-molecular-mass thiol. The K(m) values for BSH and fosfomycin are 4.2 and 17.8 mM respectively. Substrate specificity assays revealed that the thiol and amino groups of BSH are essential for activity, whereas malate is important for SaFosB recognition and catalytic efficiency. Metal activity assays indicated that Mn(2+) and Mg(2+) are likely to be the relevant cofactors under physiological conditions. The serine analogue of BSH (BOH) is an effective competitive inhibitor of SaFosB with respect to BSH, but uncompetitive with respect to fosfomycin. Coupled with NMR characterization of the reaction product (BS-fosfomycin), this demonstrates that the SaFosB-catalysed reaction pathway involves a compulsory ordered binding mechanism with fosfomycin binding first followed by BSH which then attacks the more sterically hindered C-1 carbon of the fosfomycin epoxide. Disruption of BSH biosynthesis in S. aureus increases sensitivity to fosfomycin. Together, these results indicate that SaFosB is a divalent-metal-dependent bacillithiol-S-transferase that confers fosfomycin resistance on S. aureus.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/química , Farmacorresistencia Bacteriana , Fosfomicina/química , Staphylococcus aureus/enzimología , Transferasas/química , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cisteína/análogos & derivados , Cisteína/genética , Cisteína/metabolismo , Fosfomicina/farmacología , Glucosamina/análogos & derivados , Glucosamina/genética , Glucosamina/metabolismo , Cinética , Magnesio/química , Magnesio/metabolismo , Manganeso/química , Manganeso/metabolismo , Staphylococcus aureus/genética , Transferasas/genética , Transferasas/metabolismo
2.
Biochem Biophys Res Commun ; 436(2): 128-33, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23618856

RESUMEN

Bacillithiol (BSH), an α-anomeric glycoside of l-cysteinyl-d-glucosaminyl-l-malate, is a major low molecular weight thiol found in low GC Gram-positive bacteria, such as Staphylococcus aureus. Like other low molecular weight thiols, BSH is likely involved in protection against a number of stresses. We examined S. aureus transposon mutants disrupted in each of the three genes associated with BSH biosynthesis. These mutants are sensitive to alkylating stress, oxidative stress, and metal stress indicating that BSH and BSH-dependent enzymes are involved in protection of S. aureus. We further demonstrate that BshB, a deacetylase involved in the second step of BSH biosynthesis, also acts as a BSH conjugate amidase and identify S. aureus USA 300 LAC 2626 as a BSH-S-transferase, which is able to conjugate chlorodinitrobenzene, cerulenin, and rifamycin to BSH.


Asunto(s)
Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Mutación , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Cromatografía Líquida de Alta Presión , Cisteína/metabolismo , Glucosamina/metabolismo , Yodoacetamida/farmacología , Metales/farmacología , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/genética , Oxidantes/farmacología , Piruvaldehído/farmacología , Staphylococcus aureus/enzimología , Compuestos de Sulfhidrilo/metabolismo , Factores de Tiempo
3.
Biochem Biophys Rep ; 8: 100-106, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28220152

RESUMEN

Mycobacterium smegmatis contains the low molecular weight thiols, mycothiol (MSH) and ergothioneine (ESH). Examination of transposon mutants disrupted in mshC and egtA, involved in the biosynthesis of MSH and ESH respectively, demonstrated that both mutants were sensitive to oxidative, alkylating, and metal stress. However, the mshC mutant exhibited significantly more protein carbonylation and lipid peroxidation than wildtype, while the egtA mutant had less protein and lipid damage than wildtype. We further show that Ohr, KatN, and AhpC, involved in protection against oxidative stress, are upregulated in the egtA mutant. In the mshC mutant, an Usp and a putative thiol peroxidase are upregulated. In addition, mutants lacking MSH also contained higher levels of Coenzyme F420 as compared to wildtype and two Coenzyme F420 dependent enzymes were found to be upregulated. These results indicate that lack of MSH and ESH result in induction of different mechanisms for protecting against oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA