Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430527

RESUMEN

The direct pathophysiological effects of obstructive sleep apnea (OSA) have been well described. However, the systemic and metabolic consequences of OSA are less well understood. The aim of this secondary analysis was to translate recent findings in healthy subjects on vigilance-state-dependent metabolism into the context of OSA patients and answer the question of how symptomatic OSA influences metabolism and whether these changes might explain metabolic and cardiovascular consequences of OSA. Patients with suspected OSA were assigned according to their oxygen desaturation index (ODI) and Epworth Sleepiness Scale (ESS) score into symptomatic OSA and controls. Vigilance-state-dependent breath metabolites assessed by high-resolution mass spectrometry were used to test for a difference in both groups. In total, 44 patients were eligible, of whom 18 (40.9%) were assigned to the symptomatic OSA group. Symptomatic OSA patients with a median [25%, 75% quartiles] ODI of 40.5 [35.0, 58.8] events/h and an ESS of 14.0 [11.2, 15.8] showed moderate to strong evidence for differences in 18 vigilance-state-dependent breath compounds compared to controls. These identified metabolites are part of major metabolic pathways in carbohydrate, amino acid, and lipid metabolism. Thus, beyond hypoxia per se, we hypothesize that disturbed sleep in OSA patients persists as disturbed sleep-dependent metabolite levels during daytime.


Asunto(s)
Trastornos de Somnolencia Excesiva , Apnea Obstructiva del Sueño , Humanos , Trastornos de Somnolencia Excesiva/complicaciones , Apnea Obstructiva del Sueño/complicaciones , Vigilia , Sueño , Oxígeno
2.
Chimia (Aarau) ; 76(4): 322-326, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069772

RESUMEN

Exhaled breath can reveal insights about the metabolic state of the human body through the endo- and exogenous compounds it contains. The extent of detectable compounds, however, was revolutionized by the application of mass spectrometry. More specifically, secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS) enables the detection of a broad range of breath-derived compounds simultaneously and with high sensitivity. Together with its rapid and non-invasive nature, direct breath analysis by SESI-HRMS raised particular interest for clinical applications. Over the past years, various clinical trials successfully demonstrated the technology´s capability for biomarker discovery in exhaled breath in adults and more recently in children. Current challenges lie within the potential translation of SESI-HRMS into clinical settings and the requirements therein, such as biomarker identification and validation, which became a focus of more recent studies.

3.
Chem Rev ; 119(19): 10803-10828, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31594311

RESUMEN

On-line analysis of exhaled breath offers insight into a person's metabolism without the need for sample preparation or sample collection. Due to its noninvasive nature and the possibility to sample continuously, the analysis of breath has great clinical potential. The unique features of this technology make it an attractive candidate for applications in medicine, beyond the task of diagnosis. We review the current methodologies for on-line breath analysis, discuss current and future applications, and critically evaluate challenges and pitfalls such as the need for standardization. Special emphasis is given to the use of the technology in diagnosing respiratory diseases, potential niche applications, and the promise of breath analysis for personalized medicine. The analytical methodologies used range from very small and low-cost chemical sensors, which are ideal for continuous monitoring of disease status, to optical spectroscopy and state-of-the-art, high-resolution mass spectrometry. The latter can be utilized for untargeted analysis of exhaled breath, with the capability to identify hitherto unknown molecules. The interpretation of the resulting big data sets is complex and often constrained due to a limited number of participants. Even larger data sets will be needed for assessing reproducibility and for validation of biomarker candidates. In addition, molecular structures and quantification of compounds are generally not easily available from on-line measurements and require complementary measurements, for example, a separation method coupled to mass spectrometry. Furthermore, a lack of standardization still hampers the application of the technique to screen larger cohorts of patients. This review summarizes the present status and continuous improvements of the principal on-line breath analysis methods and evaluates obstacles for their wider application.


Asunto(s)
Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Sistemas en Línea , Biomarcadores/análisis , Sistemas de Computación , Espiración , Humanos , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Trastornos Respiratorios/metabolismo , Análisis Espectral/instrumentación , Análisis Espectral/métodos , Compuestos Orgánicos Volátiles/análisis
4.
Cell Rep Methods ; 3(8): 100539, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37671025

RESUMEN

The metabolic "handshake" between the microbiota and its mammalian host is a complex, dynamic process with major influences on health. Dissecting the interaction between microbial species and metabolites found in host tissues has been a challenge due to the requirement for invasive sampling. Here, we demonstrate that secondary electrospray ionization-mass spectrometry (SESI-MS) can be used to non-invasively monitor metabolic activity of the intestinal microbiome of a live, awake mouse. By comparing the headspace metabolome of individual gut bacterial culture with the "volatilome" (metabolites released to the atmosphere) of gnotobiotic mice, we demonstrate that the volatilome is characteristic of the dominant colonizing bacteria. Combining SESI-MS with feeding heavy-isotope-labeled microbiota-accessible sugars reveals the presence of microbial cross-feeding within the animal intestine. The microbiota is, therefore, a major contributor to the volatilome of a living animal, and it is possible to capture inter-species interaction within the gut microbiota using volatilome monitoring.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Espectrometría de Masa por Ionización de Electrospray , Metaboloma , Atmósfera , Mamíferos
5.
Front Mol Biosci ; 10: 1154536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065443

RESUMEN

Introduction: There is a need to improve the diagnosis and management of pediatric asthma. Breath analysis aims to address this by non-invasively assessing altered metabolism and disease-associated processes. Our goal was to identify exhaled metabolic signatures that distinguish children with allergic asthma from healthy controls using secondary electrospray ionization high-resolution mass spectrometry (SESI/HRMS) in a cross-sectional observational study. Methods: Breath analysis was performed with SESI/HRMS. Significant differentially expressed mass-to-charge features in breath were extracted using the empirical Bayes moderated t-statistics test. Corresponding molecules were putatively annotated by tandem mass spectrometry database matching and pathway analysis. Results: 48 allergic asthmatics and 56 healthy controls were included in the study. Among 375 significant mass-to-charge features, 134 were putatively identified. Many of these could be grouped to metabolites of common pathways or chemical families. We found several pathways that are well-represented by the significant metabolites, for example, lysine degradation elevated and two arginine pathways downregulated in the asthmatic group. Assessing the ability of breath profiles to classify samples as asthmatic or healthy with supervised machine learning in a 10 times repeated 10-fold cross-validation revealed an area under the receiver operating characteristic curve of 0.83. Discussion: For the first time, a large number of breath-derived metabolites that discriminate children with allergic asthma from healthy controls were identified by online breath analysis. Many are linked to well-described metabolic pathways and chemical families involved in pathophysiological processes of asthma. Furthermore, a subset of these volatile organic compounds showed high potential for clinical diagnostic applications.

6.
Cells ; 11(19)2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36230943

RESUMEN

Rapid and reliable tools for the diagnosis and monitoring of obstructive sleep apnea (OSA) are currently lacking. Prior studies using a chemical analysis of exhaled breath have suggested the existence of an OSA-specific metabolic signature. Here, we validated this diagnostic approach and the proposed marker compounds, as well as their potential to reliably diagnose OSA. In this cross-sectional observational study, exhaled breath was analyzed using secondary electrospray ionization high-resolution mass spectrometry. The study cohort included untreated OSA patients, OSA patients treated with continuous positive airway pressure and healthy subjects. The robustness of previously reported OSA markers was validated based on detectability, significant differences between groups (Mann-Whitney U test) and classification performance. The breath analysis of 118 participants resulted in 42 previously reported markers that could be confirmed in this independent validation cohort. Nine markers were significantly increased in untreated OSA compared to treated OSA, with a subset of them being consistent with a previous validation study. An OSA prediction based on the confirmed OSA signature performed with an AUC of 0.80 (accuracy 77%, sensitivity 73% and specificity 80%). As several breath markers were clearly found to be repeatable and robust in this independent validation study, these results underscore the clinical potential of breath analysis for OSA diagnostics and monitoring.


Asunto(s)
Espiración , Apnea Obstructiva del Sueño , Biomarcadores/metabolismo , Pruebas Respiratorias/métodos , Presión de las Vías Aéreas Positiva Contínua/métodos , Estudios Transversales , Humanos , Apnea Obstructiva del Sueño/diagnóstico
7.
J Breath Res ; 17(1)2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36579824

RESUMEN

Applications for direct breath analysis by mass spectrometry (MS) are rapidly expanding. One of the more recent mass spectrometry-based approaches is secondary electrospray ionization coupled to high-resolution mass spectrometry (SESI-HRMS). Despite increasing usage, the SESI methodology still lacks standardization procedures for quality control and absolute quantification. In this study, we designed and evaluated a custom-built standard delivery system tailored for direct breath analysis. The system enables the simultaneous introduction of multiple gas-phase standard compounds into ambient MS setups in the lower parts-per-million (ppm) to parts-per-billion (ppb) range. To best mimic exhaled breath, the gas flow can be heated (37 °C-40 °C) and humidified (up to 98% relative humidity). Inter-laboratory comparison of the system included various SESI-HRMS setups, i.e. an Orbitrap and a quadrupole time-of-flight mass spectrometer (QTOF), and using both single- as well as multi-component standards. This revealed highly stable and reproducible performances with between-run variation <19% and within-run variation <20%. Independent calibration runs demonstrated high accuracy (96%-111%) and precision (>95%) for the single-compound standard acetone, while compound-specific performances were obtained for the multi-component standard. Similarly, the sensitivity varied for different compounds within the multi-component standard across all SESI-Orbitrap and -QTOF setups, yielding limits of detections from 3.1 ppb (forp-xylene) to 0.05 ppb (for 1,8-cineol). Routinely applying the standard system throughout several weeks, allowed us to monitor instrument stability and to identify technical outliers in exhaled breath measurements. Such routine deployment of standards would significantly improve data quality and comparability, which is especially important in longitudinal and multi-center studies. Furthermore, performance validation of the system demonstrated its suitability for reliable absolute quantification while it illustrated compound-dependent behavior for SESI.


Asunto(s)
Líquidos Corporales , Espectrometría de Masa por Ionización de Electrospray , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos , Pruebas Respiratorias/métodos , Eucaliptol , Espiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA