Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 24(11): 2673-85, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25872099

RESUMEN

In recent years, a few colonial marine invertebrates have shown intracolonial genetic variability, a previously unreported phenomenon. Intracolonial genetic variability describes the occurrence of more than a single genotype within an individual colony. This variability can be traced back to two underlying processes: chimerism and mosaicism. Chimerism is the fusion of two or more individuals, whereas mosaicism mostly derives from somatic cell mutations. Until now, it remained unclear to what degree the ecologically important group of hermatypic (reef building) corals might be affected. We investigate the occurrence of intracolonial genetic variability in five scleractinian corals: Acropora florida, Acropora hyacinthus, Acropora sarmentosa, Pocillopora species complex and Porites australiensis. The main focus was to test different genera for the phenomenon via microsatellite markers and to distinguish which underlying process caused the genetic heterogeneity. Our results show that intracolonial genetic variability was common (between 46.6% for A. sarmentosa and 23.8% for P. species complex) in all tested corals. The main process was mosaicism (69 cases of 222 tested colonies), but at least one chimera existed in every species. This suggests that intracolonial genetic variability is widespread in scleractinian corals and could challenge the view of a coral colony as an individual and therefore a unit of selection. However, it might also hold potential for colony survival under rapidly changing environmental conditions.


Asunto(s)
Antozoos/genética , Variación Genética , Genotipo , Animales , Australia , Repeticiones de Microsatélite , Análisis de Secuencia de ADN
2.
PLoS One ; 7(11): e49202, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185309

RESUMEN

High throughput sequencing technologies are revolutionizing genetic research. With this "rise of the machines", genomic sequences can be obtained even for unknown genomes within a short time and for reasonable costs. This has enabled evolutionary biologists studying genetically unexplored species to identify molecular markers or genomic regions of interest (e.g. micro- and minisatellites, mitochondrial and nuclear genes) by sequencing only a fraction of the genome. However, when using such datasets from non-model species, it is possible that DNA from non-target contaminant species such as bacteria, viruses, fungi, or other eukaryotic organisms may complicate the interpretation of the results. In this study we analysed 14 genomic pyrosequencing libraries of aquatic non-model taxa from four major evolutionary lineages. We quantified the amount of suitable micro- and minisatellites, mitochondrial genomes, known nuclear genes and transposable elements and searched for contamination from various sources using bioinformatic approaches. Our results show that in all sequence libraries with estimated coverage of about 0.02-25%, many appropriate micro- and minisatellites, mitochondrial gene sequences and nuclear genes from different KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways could be identified and characterized. These can serve as markers for phylogenetic and population genetic analyses. A central finding of our study is that several genomic libraries suffered from different biases owing to non-target DNA or mobile elements. In particular, viruses, bacteria or eukaryote endosymbionts contributed significantly (up to 10%) to some of the libraries analysed. If not identified as such, genetic markers developed from high-throughput sequencing data for non-model organisms may bias evolutionary studies or fail completely in experimental tests. In conclusion, our study demonstrates the enormous potential of low-coverage genome survey sequences and suggests bioinformatic analysis workflows. The results also advise a more sophisticated filtering for problematic sequences and non-target genome sequences prior to developing markers.


Asunto(s)
Recolección de Datos , Evolución Molecular , Genoma/genética , Animales , Bacterias/genética , Núcleo Celular/genética , Mapeo Contig , ADN/genética , ADN Mitocondrial/genética , Bases de Datos Genéticas , Biblioteca de Genes , Genes Mitocondriales/genética , Marcadores Genéticos , Tamaño del Genoma/genética , Genoma Mitocondrial/genética , Repeticiones de Microsatélite/genética , ARN Ribosómico/genética , Análisis de Secuencia de ADN , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA