Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 415(18): 4615-4627, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37389599

RESUMEN

The potential of fungi for use as biotechnological factories in the production of a range of valuable metabolites, such as enzymes, terpenes, and volatile aroma compounds, is high. Unlike other microorganisms, fungi mostly secrete secondary metabolites into the culture medium, allowing for easy extraction and analysis. To date, the most commonly used technique in the analysis of volatile organic compounds (VOCs) is gas chromatography, which is time and labour consuming. We propose an alternative ambient screening method that provides rapid chemical information for characterising the VOCs of filamentous fungi in liquid culture using a commercially available ambient dielectric barrier discharge ionisation (DBDI) source connected to a quadrupole-Orbitrap mass spectrometer. The effects of method parameters on measured peak intensities of a series of 8 selected aroma standards were optimised with the best conditions being selected for sample analysis. The developed method was then deployed to the screening of VOCs from samples of 13 fungal strains in three different types of complex growth media showing clear differences in VOC profiles across the different media, enabling determination of best culturing conditions for each compound-strain combination. Our findings underline the applicability of ambient DBDI for the direct detection and comparison of aroma compounds produced by filamentous fungi in liquid culture.


Asunto(s)
Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas , Medios de Cultivo/análisis , Hongos
2.
Anal Chem ; 94(3): 1795-1803, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35005896

RESUMEN

Gemcitabine (dFdC) is a common treatment for pancreatic cancer; however, it is thought that treatment may fail because tumor stroma prevents drug distribution to tumor cells. Gemcitabine is a pro-drug with active metabolites generated intracellularly; therefore, visualizing the distribution of parent drug as well as its metabolites is important. A multimodal imaging approach was developed using spatially coregistered mass spectrometry imaging (MSI), imaging mass cytometry (IMC), multiplex immunofluorescence microscopy (mIF), and hematoxylin and eosin (H&E) staining to assess the local distribution and metabolism of gemcitabine in tumors from a genetically engineered mouse model of pancreatic cancer (KPC) allowing for comparisons between effects in the tumor tissue and its microenvironment. Mass spectrometry imaging (MSI) enabled the visualization of the distribution of gemcitabine (100 mg/kg), its phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP, and the inactive metabolite dFdU. Distribution was compared to small-molecule ATR inhibitor AZD6738 (25 mg/kg), which was codosed. Gemcitabine metabolites showed heterogeneous distribution within the tumor, which was different from the parent compound. The highest abundance of dFdCMP, dFdCDP, and dFdCTP correlated with distribution of endogenous AMP, ADP, and ATP in viable tumor cell regions, showing that gemcitabine active metabolites are reaching the tumor cell compartment, while AZD6738 was located to nonviable tumor regions. The method revealed that the generation of active, phosphorylated dFdC metabolites as well as treatment-induced DNA damage primarily correlated with sites of high proliferation in KPC PDAC tumor tissue, rather than sites of high parent drug abundance.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Ratones , Imagen Multimodal , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Gemcitabina
3.
Angew Chem Int Ed Engl ; 61(36): e202202075, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35830332

RESUMEN

Here, we demonstrate detection by mass spectrometry of an intact protein-drug complex directly from liver tissue from rats that had been orally dosed with the drug. The protein-drug complex comprised fatty acid binding protein 1, FABP1, non-covalently bound to the small molecule therapeutic bezafibrate. Moreover, we demonstrate spatial mapping of the [FABP1+bezafibrate] complex across a thin section of liver by targeted mass spectrometry imaging. This work is the first demonstration of in situ mass spectrometry analysis of a non-covalent protein-drug complex formed in vivo and has implications for early stage drug discovery by providing a route to target-drug characterization directly from the physiological environment.


Asunto(s)
Bezafibrato , Hígado , Animales , Bezafibrato/análisis , Bezafibrato/metabolismo , Diagnóstico por Imagen , Descubrimiento de Drogas , Hígado/metabolismo , Espectrometría de Masas , Ratas
4.
Anal Chem ; 93(5): 2767-2775, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33474935

RESUMEN

Clinical tissue specimens are often unscreened, and preparation of tissue sections for analysis by mass spectrometry imaging (MSI) can cause aerosolization of particles potentially carrying an infectious load. We here present a decontamination approach based on ultraviolet-C (UV-C) light to inactivate clinically relevant pathogens such as herpesviridae, papovaviridae human immunodeficiency virus, or SARS-CoV-2, which may be present in human tissue samples while preserving the biodistributions of analytes within the tissue. High doses of UV-C required for high-level disinfection were found to cause oxidation and photodegradation of endogenous species. Lower UV-C doses maintaining inactivation of clinically relevant pathogens to a level of increased operator safety were found to be less destructive to the tissue metabolome and xenobiotics. These doses caused less alterations of the tissue metabolome and allowed elucidation of the biodistribution of the endogenous metabolites. Additionally, we were able to determine the spatially integrated abundances of the ATR inhibitor ceralasertib from decontaminated human biopsies using desorption electrospray ionization-MSI (DESI-MSI).


Asunto(s)
Descontaminación/métodos , Rayos Ultravioleta , Animales , Azetidinas/análisis , Azetidinas/uso terapéutico , COVID-19/patología , COVID-19/virología , Neoplasias de Cabeza y Cuello/química , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Metaboloma , Naftalenos/análisis , Naftalenos/uso terapéutico , Fotólisis/efectos de la radiación , Ratas , Ratas Wistar , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/efectos de la radiación , Espectrometría de Masa por Ionización de Electrospray/métodos , Terfenadina/química , Inactivación de Virus/efectos de la radiación
5.
Anal Chem ; 93(6): 3061-3071, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33534548

RESUMEN

An ever-increasing array of imaging technologies are being used in the study of complex biological samples, each of which provides complementary, occasionally overlapping information at different length scales and spatial resolutions. It is important to understand the information provided by one technique in the context of the other to achieve a more holistic overview of such complex samples. One way to achieve this is to use annotations from one modality to investigate additional modalities. For microscopy-based techniques, these annotations could be manually generated using digital pathology software or automatically generated by machine learning (including deep learning) methods. Here, we present a generic method for using annotations from one microscopy modality to extract information from complementary modalities. We also present a fast, general, multimodal registration workflow [evaluated on multiple mass spectrometry imaging (MSI) modalities, matrix-assisted laser desorption/ionization, desorption electrospray ionization, and rapid evaporative ionization mass spectrometry] for automatic alignment of complex data sets, demonstrating an order of magnitude speed-up compared to previously published work. To demonstrate the power of the annotation transfer and multimodal registration workflows, we combine MSI, histological staining (such as hematoxylin and eosin), and deep learning (automatic annotation of histology images) to investigate a pancreatic cancer mouse model. Neoplastic pancreatic tissue regions, which were histologically indistinguishable from one another, were observed to be metabolically different. We demonstrate the use of the proposed methods to better understand tumor heterogeneity and the tumor microenvironment by transferring machine learning results freely between the two modalities.


Asunto(s)
Aprendizaje Profundo , Animales , Técnicas Histológicas , Ratones , Imagen Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Flujo de Trabajo
6.
Anal Chem ; 93(8): 3742-3749, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33606520

RESUMEN

Imaging mass cytometry (IMC) offers the opportunity to image metal- and heavy halogen-containing xenobiotics in a highly multiplexed experiment with other immunochemistry-based reagents to distinguish uptake into different tissue structures or cell types. However, in practice, many xenobiotics are not amenable to this analysis, as any compound which is not bound to the tissue matrix will delocalize during aqueous sample-processing steps required for IMC analysis. Here, we present a strategy to perform IMC experiments on a water-soluble polysarcosine-modified dendrimer drug-delivery system (S-Dends). This strategy involves two consecutive imaging acquisitions on the same tissue section using the same instrumental platform, an initial laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MSI) experiment followed by tissue staining and a standard IMC experiment. We demonstrated that settings can be found for the initial ablation step that leave sufficient residual tissue for subsequent antibody staining and visualization. This workflow results in lateral resolution for the S-Dends of 2 µm followed by imaging of metal-tagged antibodies at 1 µm.


Asunto(s)
Citometría de Imagen , Agua , Sistemas de Liberación de Medicamentos , Espectrometría de Masas , Coloración y Etiquetado
7.
Anal Chem ; 92(16): 11080-11088, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32519547

RESUMEN

A new tissue sample embedding and processing method is presented that provides downstream compatibility with numerous different histological, molecular biology, and analytical techniques. The methodology is based on the low temperature embedding of fresh frozen specimens into a hydrogel matrix composed of hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) and sectioning using a cryomicrotome. The hydrogel was expected not to interfere with standard tissue characterization methods, histologically or analytically. We assessed the compatibility of this protocol with various mass spectrometric imaging methods including matrix-assisted laser desorption ionization (MALDI), desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS). We also demonstrated the suitability of the universal protocol for extraction based molecular biology techniques such as rt-PCR. The integration of multiple analytical modalities through this universal sample preparation protocol offers the ability to study tissues at a systems biology level and directly linking results to tissue morphology and cellular phenotype.


Asunto(s)
Hidrogeles/química , Derivados de la Hipromelosa/química , Povidona/química , Manejo de Especímenes/métodos , Adhesión del Tejido/métodos , Animales , Masculino , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Neuroimage ; 172: 808-816, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29329980

RESUMEN

There is a high need to develop quantitative imaging methods capable of providing detailed brain localization information of several molecular species simultaneously. In addition, extensive information on the effect of the blood-brain barrier on the penetration, distribution and efficacy of neuroactive compounds is required. Thus, we have developed a mass spectrometry imaging method to visualize and quantify the brain distribution of drugs with varying blood-brain barrier permeability. With this approach, we were able to determine blood-brain barrier transport of different drugs and define the drug distribution in very small brain structures (e.g., choroid plexus) due to the high spatial resolution provided. Simultaneously, we investigated the effect of drug-drug interactions by inhibiting the membrane transporter multidrug resistance 1 protein. We propose that the described approach can serve as a valuable analytical tool during the development of neuroactive drugs, as it can provide physiologically relevant information often neglected by traditional imaging technologies.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Loperamida/farmacocinética , Propranolol/farmacocinética , Espectrometría de Masa por Ionización de Electrospray/métodos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Interacciones Farmacológicas , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Tisular
9.
Anal Chem ; 90(10): 6051-6058, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29668267

RESUMEN

Described is a quantitative-mass-spectrometry-imaging (qMSI) methodology for the analysis of lactate and glutamate distributions in order to delineate heterogeneity among mouse tumor models used to support drug-discovery efficacy testing. We evaluate and report on preanalysis-stabilization methods aimed at improving the reproducibility and efficiency of quantitative assessments of endogenous molecules in tissues. Stability experiments demonstrate that optimum stabilization protocols consist of frozen-tissue embedding, post-tissue-sectioning desiccation, and storage at -80 °C of tissue sections sealed in vacuum-tight containers. Optimized stabilization protocols are used in combination with qMSI methodology for the absolute quantitation of lactate and glutamate in tumors, incorporating the use of two different stable-isotope-labeled versions of each analyte and spectral-clustering performed on each tissue section using k-means clustering to allow region-specific, pixel-by-pixel quantitation. Region-specific qMSI was used to screen different tumor models and identify a phenotype that has low lactate heterogeneity, which will enable accurate measurements of lactate modulation in future drug-discovery studies. We conclude that using optimized qMSI protocols, it is possible to quantify endogenous metabolites within tumors, and region-specific quantitation can provide valuable insight into tissue heterogeneity and the tumor microenvironment.


Asunto(s)
Ácido Glutámico/análisis , Ácido Láctico/análisis , Espectrometría de Masas , Animales , Femenino , Ácido Glutámico/metabolismo , Ácido Láctico/metabolismo , Ratones , Ratones Desnudos , Neoplasias Experimentales/química , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(3): 1216-21, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24398526

RESUMEN

Mass spectrometry imaging (MSI) provides the opportunity to investigate tumor biology from an entirely novel biochemical perspective and could lead to the identification of a new pool of cancer biomarkers. Effective clinical translation of histology-driven MSI in systems oncology requires precise colocalization of morphological and biochemical features as well as advanced methods for data treatment and interrogation. Currently proposed MSI workflows are subject to several limitations, including nonoptimized raw data preprocessing, imprecise image coregistration, and limited pattern recognition capabilities. Here we outline a comprehensive strategy for histology-driven MSI, using desorption electrospray ionization that covers (i) optimized data preprocessing for improved information recovery; (ii) precise image coregistration; and (iii) efficient extraction of tissue-specific molecular ion signatures for enhanced biochemical distinction of different tissue types. The proposed workflow has been used to investigate region-specific lipid signatures in colorectal cancer tissue. Unique lipid patterns were observed using this approach according to tissue type, and a tissue recognition system using multivariate molecular ion patterns allowed highly accurate (>98%) identification of pixels according to morphology (cancer, healthy mucosa, smooth muscle, and microvasculature). This strategy offers unique insights into tumor microenvironmental biochemistry and should facilitate compilation of a large-scale tissue morphology-specific MSI spectral database with which to pursue next-generation, fully automated histological approaches.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Lípidos/química , Espectrometría de Masa por Ionización de Electrospray , Algoritmos , Biomarcadores/metabolismo , Biología Computacional , Humanos , Procesamiento de Imagen Asistido por Computador , Análisis Multivariante , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Programas Informáticos
12.
Neuroimage ; 136: 129-38, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27155126

RESUMEN

With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyramine, serotonin, glutamate, glutamine, aspartate, γ-aminobutyric acid, adenosine) as well as neuroactive drugs (amphetamine, sibutramine, fluvoxamine) and drug metabolites in situ directly in brain tissue sections. The use of both positive and negative ionization modes increased the number of identified molecular targets. Chemical derivatization by charge-tagging the primary amines of molecules significantly increased the sensitivity, enabling the detection of low abundant neurotransmitters and other neuroactive substances previously undetectable by MSI. The sensitivity of the imaging approach of neurochemicals has a great potential in many diverse applications in fields such as neuroscience, pharmacology, drug discovery, neurochemistry, and medicine.


Asunto(s)
Algoritmos , Encéfalo/metabolismo , Imagen Molecular/métodos , Neurotransmisores/metabolismo , Psicotrópicos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Encéfalo/anatomía & histología , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador , Distribución Tisular
13.
Anal Chem ; 88(15): 7507-14, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27377867

RESUMEN

Rapid evaporative ionization mass spectrometry (REIMS) was used for the rapid mass spectrometric profiling of cancer cell lines. Spectral reproducibility was assessed for three different cell lines, and the extent of interclass differences and intraclass variance was found to allow the identification of these cell lines based on the REIMS data. Subsequently, the NCI60 cell line panel was subjected to REIMS analysis, and the resulting data set was investigated for its distinction of individual cell lines and different tissue types of origin. Information content of REIMS spectral profiles of cell lines were found to be similar to those obtained from mammalian tissues although pronounced differences in relative lipid intensity were observed. Ultimately, REIMS was shown to detect changes in lipid content of cell lines due to mycoplasma infection. The data show that REIMS is an attractive means to study cell lines involving minimal sample preparation and analysis times in the range of seconds.


Asunto(s)
Lípidos/análisis , Línea Celular Tumoral/microbiología , Humanos , Espectrometría de Masas/métodos , Mycoplasma , Neoplasias/metabolismo , Análisis de Componente Principal , Reproducibilidad de los Resultados
14.
Anal Chem ; 87(5): 2527-34, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25671656

RESUMEN

Rapid evaporative ionization mass spectrometry (REIMS) technology allows real time intraoperative tissue classification and the characterization and identification of microorganisms. In order to create spectral libraries for training the classification models, reference data need to be acquired in large quantities as classification accuracy generally improves as a function of number of training samples. In this study, we present an automated high-throughput method for collecting REIMS data from heterogeneous organic tissue. The underlying instrumentation consists of a 2D stage with an additional high-precision z-axis actuator that is equipped with an electrosurgical diathermy-based sampling probe. The approach was validated using samples of human liver with metastases and bacterial strains, cultured on solid medium, belonging to the species P. aeruginosa, B. subtilis, and S. aureus. For both sample types, spatially resolved spectral information was obtained that resulted in clearly distinguishable multivariate clustering between the healthy/cancerous liver tissues and between the bacterial species.


Asunto(s)
Adenocarcinoma/secundario , Bacterias/clasificación , Neoplasias Colorrectales/patología , Medios de Cultivo/análisis , Diagnóstico por Imagen , Neoplasias Hepáticas/secundario , Espectrometría de Masa por Ionización de Electrospray/métodos , Bacterias/química , Bacterias/crecimiento & desarrollo , Humanos , Procesamiento de Imagen Asistido por Computador , Análisis de Componente Principal
15.
Anal Chem ; 86(13): 6555-62, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24896667

RESUMEN

Rapid evaporative ionization mass spectrometry (REIMS) was investigated for its suitability as a general identification system for bacteria and fungi. Strains of 28 clinically relevant bacterial species were analyzed in negative ion mode, and corresponding data was subjected to unsupervised and supervised multivariate statistical analyses. The created supervised model yielded correct cross-validation results of 95.9%, 97.8%, and 100% on species, genus, and Gram-stain level, respectively. These results were not affected by the resolution of the mass spectral data. Blind identification tests were performed for strains cultured on different culture media and analyzed using different instrumental platforms which led to 97.8-100% correct identification. Seven different Escherichia coli strains were subjected to different culture conditions and were distinguishable with 88% accuracy. In addition, the technique proved suitable to distinguish five pathogenic Candida species with 98.8% accuracy without any further modification to the experimental workflow. These results prove that REIMS is sufficiently specific to serve as a culture condition-independent tool for the identification and characterization of microorganisms.


Asunto(s)
Bacterias/química , Infecciones Bacterianas/microbiología , Candidiasis/microbiología , Espectrometría de Masas/instrumentación , Levaduras/química , Aerosoles/química , Bacterias/clasificación , Humanos , Espectrometría de Masas/economía , Factores de Tiempo , Volatilización , Levaduras/clasificación
16.
Anal Chem ; 86(16): 8473-80, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25084360

RESUMEN

Cassette dosing of compounds for preclinical drug plasma pharmacokinetic analysis has been shown to be a powerful strategy within the pharmaceutical industry for increasing throughput while decreasing the number of animals used. Presented here for the first time is data on the application of a cassette dosing strategy for label-free tissue distribution studies. The aim of the study was to image the spatial distribution of eight nonproprietary drugs (haloperidol, bufuralol, midazolam, clozapine, terfenadine, erlotinib, olanzapine, and moxifloxacin) in multiple tissues after oral and intravenous cassette dosing (four compounds per dose route). An array of mass spectrometry imaging technologies, including matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI), liquid extraction surface analysis tandem mass spectrometry (LESA-MS/MS), and desorption electrospray ionization mass spectrometry (DESI-MS) was used. Tissue analysis following intravenous and oral administration of discretely and cassette-dosed compounds demonstrated similar relative abundances across a range of tissues indicating that a cassette dosing approach was applicable. MALDI MSI was unsuccessful in detecting all of the target compounds; therefore, DESI MSI, a complementary mass spectrometry imaging technique, was used to detect additional target compounds. In addition, by adapting technology used for tissue profiling (LESA-MS/MS) low spatial resolution mass spectrometry imaging (∼1 mm) was possible for all targets across all tissues. This study exemplifies the power of multiplatform MSI analysis within a pharmaceutical research and development (R&D) environment. Furthermore, we have illustrated that the cassette dosing approach can be readily applied to provide combined, label-free pharmacokinetic and drug distribution data at an early stage of the drug discovery/development process while minimizing animal usage.


Asunto(s)
Preparaciones Farmacéuticas/administración & dosificación , Farmacocinética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Administración Intravenosa , Administración Oral , Animales , Descubrimiento de Drogas , Masculino , Ratones , Ratas Wistar , Espectrometría de Masas en Tándem/métodos , Distribución Tisular
17.
Nat Commun ; 14(1): 5060, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604826

RESUMEN

pH alterations are a hallmark of many pathologies including cancer and kidney disease. Here, we introduce [1,5-13C2]Z-OMPD as a hyperpolarized extracellular pH and perfusion sensor for MRI which allows to generate a multiparametric fingerprint of renal disease status and to detect local tumor acidification. Exceptional long T1 of two minutes at 1 T, high pH sensitivity of up to 1.9 ppm per pH unit and suitability of using the C1-label as internal frequency reference enables pH imaging in vivo of three pH compartments in healthy rat kidneys. Spectrally selective targeting of both 13C-resonances enables simultaneous imaging of perfusion and filtration in 3D and pH in 2D within one minute to quantify renal blood flow, glomerular filtration rates and renal pH in healthy and hydronephrotic kidneys with superior sensitivity compared to clinical routine methods. Imaging multiple biomarkers within a single session renders [1,5-13C2]Z-OMPD a promising new hyperpolarized agent for oncology and nephrology.


Asunto(s)
Filtración , Imagen por Resonancia Magnética , Animales , Ratas , Perfusión , Tasa de Filtración Glomerular , Concentración de Iones de Hidrógeno
18.
Metabolites ; 13(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36984817

RESUMEN

With increased use of mass spectrometry imaging (MSI) in support of pharmaceutical research and development, there are opportunities to develop analytical pipelines that incorporate exploratory high-performance analysis with higher capacity and faster targeted MSI. Therefore, to enable faster MSI data acquisition we present analyte-targeted desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) utilizing a triple-quadrupole (TQ) mass analyzer. The evaluated platform configuration provided superior sensitivity compared to a conventional time-of-flight (TOF) mass analyzer and thus holds the potential to generate data applicable to pharmaceutical research and development. The platform was successfully operated with sampling rates up to 10 scans/s, comparing positively to the 1 scan/s commonly used on comparable DESI-TOF setups. The higher scan rate enabled investigation of the desorption/ionization processes of endogenous lipid species such as phosphatidylcholines and a co-administered cassette of four orally dosed drugs-erlotininb, moxifloxacin, olanzapine, and terfenadine. This was used to enable understanding of the impact of the desorption/ionization processes in order to optimize the operational parameters, resulting in improved compound coverage for olanzapine and the main olanzapine metabolite, hydroxy-olanzapine, in brain tissue sections compared to DESI-TOF analysis or matrix-assisted laser desorption/ionization (MALDI) platforms. The approach allowed reducing the amount of recorded information, thus reducing the size of datasets from up to 150 GB per experiment down to several hundred MB. The improved performance was demonstrated in case studies investigating the suitability of this approach for mapping drug distribution, spatially resolved profiling of drug-induced nephrotoxicity, and molecular-histological tissue classification of ovarian tumors specimens.

19.
Analyst ; 137(17): 4037-44, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22814299

RESUMEN

An analysis method for aqueous samples by the direct combination of C18/SCX mixed mode thin-film microextraction (TFME) and desorption electrospray ionization mass spectrometry (DESI-MS) was developed. Both techniques make analytical workflow simpler and faster, hence the combination of the two techniques enables considerably shorter analysis time compared to the traditional liquid chromatography mass spectrometry (LC-MS) approach. The method was characterized using carbamazepine and triclosan as typical examples for pharmaceuticals and personal care product (PPCP) components which draw increasing attention as wastewater-derived environmental contaminants. Both model compounds were successfully detected in real wastewater samples and their concentrations determined using external calibration with isotope labeled standards. Effects of temperature, agitation, sample volume, and exposure time were investigated in the case of spiked aqueous samples. Results were compared to those of parallel HPLC-MS determinations and good agreement was found through a three orders of magnitude wide concentration range. Serious matrix effects were observed in treated wastewater, but lower limits of detection were still found to be in the low ng L(-1) range. Using an Orbitrap mass spectrometer, the technique was found to be ideal for screening purposes and led to the detection of various different PPCP components in wastewater treatment plant effluents, including beta-blockers, nonsteroidal anti-inflammatory drugs, and UV filters.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Carbamazepina/análisis , Carbamazepina/aislamiento & purificación , Cinética , Membranas Artificiales , Microextracción en Fase Sólida , Triclosán/análisis , Triclosán/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación
20.
Metabolites ; 12(3)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35323705

RESUMEN

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a standard tool used for absolute quantification of drugs in pharmacokinetic (PK) studies. However, all spatial information is lost during the extraction and elucidation of a drugs biodistribution within the tissue is impossible. In the study presented here we used a sample embedding protocol optimized for mass spectrometry imaging (MSI) to prepare up to 15 rat intestine specimens at once. Desorption electrospray ionization (DESI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) were employed to determine the distributions and relative abundances of four benchmarking compounds in the intestinal segments. High resolution MALDI-MSI experiments performed at 10 µm spatial resolution allowed to determine the drug distribution in the different intestinal histological compartments to determine the absorbed and tissue bound fractions of the drugs. The low tissue bound drug fractions, which were determined to account for 56-66% of the total drug, highlight the importance to understand the spatial distribution of drugs within the histological compartments of a given tissue to rationalize concentration differences found in PK studies. The mean drug abundances of four benchmark compounds determined by MSI were correlated with the absolute drug concentrations. Linear regression resulted in coefficients of determination (R2) ranging from 0.532 to 0.926 for MALDI-MSI and R2 values ranging from 0.585 to 0.945 for DESI-MSI, validating a quantitative relation of the imaging data. The good correlation of the absolute tissue concentrations of the benchmark compounds and the MSI data provides a bases for relative quantification of compounds within and between tissues, without normalization to an isotopically labelled standard, provided that the compared tissues have inherently similar ion suppression effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA