Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurophysiol ; 130(6): 1492-1507, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37937368

RESUMEN

Somatosensory information is propagated from the periphery to the cerebral cortex by two parallel pathways through the ventral posterolateral (VPL) and ventral posteromedial (VPM) thalamus. VPL and VPM neurons receive somatosensory signals from the body and head, respectively. VPL and VPM neurons may also receive cell type-specific GABAergic input from the reticular nucleus of the thalamus. Although VPL and VPM neurons have distinct connectivity and physiological roles, differences in their functional properties remain unclear as they are often studied as one ventrobasal thalamus neuron population. Here, we directly compared synaptic and intrinsic properties of VPL and VPM neurons in C57Bl/6J mice of both sexes aged P25-P32. VPL neurons showed greater depolarization-induced spike firing and spike frequency adaptation than VPM neurons. VPL and VPM neurons fired similar numbers of spikes during hyperpolarization rebound bursts, but VPM neurons exhibited shorter burst latency compared with VPL neurons, which correlated with larger sag potential. VPM neurons had larger membrane capacitance and more complex dendritic arbors. Recordings of spontaneous and evoked synaptic transmission suggested that VPL neurons receive stronger excitatory synaptic input, whereas inhibitory synapse strength was stronger in VPM neurons. This work indicates that VPL and VPM thalamocortical neurons have distinct intrinsic and synaptic properties. The observed functional differences could have important implications for their specific physiological and pathophysiological roles within the somatosensory thalamocortical network.NEW & NOTEWORTHY This study revealed that somatosensory thalamocortical neurons in the VPL and VPM have substantial differences in excitatory synaptic input and intrinsic firing properties. The distinct properties suggest that VPL and VPM neurons could process somatosensory information differently and have selective vulnerability to disease. This work improves our understanding of nucleus-specific neuron function in the thalamus and demonstrates the critical importance of studying these parallel somatosensory pathways separately.


Asunto(s)
Neuronas , Tálamo , Animales , Ratones , Femenino , Masculino , Neuronas/fisiología , Tálamo/fisiología , Transmisión Sináptica/fisiología , Sinapsis/fisiología , Corteza Cerebral , Corteza Somatosensorial/fisiología
2.
Neurobiol Dis ; 167: 105672, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35219855

RESUMEN

Thalamocortical network dysfunction contributes to seizures and sleep deficits in Dravet syndrome (DS), an infantile epileptic encephalopathy, but the underlying molecular and cellular mechanisms remain elusive. DS is primarily caused by mutations in the SCN1A gene encoding the voltage-gated sodium channel NaV1.1, which is highly expressed in GABAergic reticular thalamus (nRT) neurons as well as glutamatergic thalamocortical neurons. We hypothesized that NaV1.1 haploinsufficiency alters somatosensory corticothalamic circuit function through both intrinsic and synaptic mechanisms in nRT and thalamocortical neurons. Using Scn1a heterozygous mice of both sexes aged P25-P30, we discovered reduced excitability of nRT neurons and thalamocortical neurons in the ventral posterolateral (VPL) thalamus, while thalamocortical ventral posteromedial (VPM) neurons exhibited enhanced excitability. NaV1.1 haploinsufficiency enhanced GABAergic synaptic input and reduced glutamatergic input to VPL neurons, but not VPM neurons. In addition, glutamatergic input to nRT neurons was reduced in Scn1a heterozygous mice. These findings introduce alterations in glutamatergic synapse function and aberrant glutamatergic neuron excitability in the thalamus as disease mechanisms in DS, which has been widely considered a disease of GABAergic neurons. This work reveals additional complexity that expands current models of thalamic dysfunction in DS and identifies new components of corticothalamic circuitry as potential therapeutic targets.


Asunto(s)
Epilepsias Mioclónicas , Neuronas GABAérgicas , Animales , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/genética , Femenino , Neuronas GABAérgicas/fisiología , Haploinsuficiencia , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Tálamo
4.
bioRxiv ; 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39229083

RESUMEN

Molecular and functional diversity among synapses is generated, in part, by differential expression of neurotransmitter receptors and their associated protein complexes. N-methyl-D-aspartate receptors (NMDARs) are tetrameric ionotropic glutamate receptors that most often comprise two GluN1 and two GluN2 subunits. NMDARs generate functionally diverse synapses across neuron populations through cell-type-specific expression patterns of GluN2 subunits (GluN2A - 2D), which have vastly different functional properties and distinct downstream signaling. Diverse NMDAR function has also been observed at anatomically distinct inputs to a single neuron population. However, the mechanisms that generate input-specific NMDAR function remain unknown as few studies have investigated subcellular GluN2 subunit localization in native brain tissue. We investigated NMDAR synaptic localization in thalamocortical (TC) neurons expressing all four GluN2 subunits. Utilizing super resolution imaging and knockout-validated antibodies, we revealed subtype- and input-specific GluN2 localization at corticothalamic (CT) versus sensory inputs to TC neurons in 4-week-old male and female C57Bl/6J mice. GluN2B was the most abundant postsynaptic subunit across all glutamatergic synapses followed by GluN2A and GluN2C, and GluN2D was localized to the fewest synapses. GluN2B was preferentially localized to CT synapses over sensory synapses, while GluN2A and GluN2C were more abundant at sensory inputs compared to CT inputs. Furthermore, postsynaptic scaffolding proteins PSD95 and SAP102 were preferentially localized with specific GluN2 subunits, and SAP102 was more abundant at sensory synapses than PSD95. This work indicates that TC neurons exhibit subtype- and input-specific localization of diverse NMDARs and associated scaffolding proteins that likely contribute to functional differences between CT and sensory synapses.

5.
Front Cell Dev Biol ; 11: 1113675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875755

RESUMEN

The corticotropin-releasing hormone (CRH)-expressing neurons in the hypothalamus are critical regulators of the neuroendocrine stress response pathway, known as the hypothalamic-pituitary-adrenal (HPA) axis. As developmental vulnerabilities of CRH neurons contribute to stress-associated neurological and behavioral dysfunctions, it is critical to identify the mechanisms underlying normal and abnormal CRH neuron development. Using zebrafish, we identified Down syndrome cell adhesion molecule like-1 (dscaml1) as an integral mediator of CRH neuron development and necessary for establishing normal stress axis function. In dscaml1 mutant animals, hypothalamic CRH neurons had higher crhb (the CRH homolog in zebrafish) expression, increased cell number, and reduced cell death compared to wild-type controls. Physiologically, dscaml1 mutant animals had higher baseline stress hormone (cortisol) levels and attenuated responses to acute stressors. Together, these findings identify dscaml1 as an essential factor for stress axis development and suggest that HPA axis dysregulation may contribute to the etiology of human DSCAML1-linked neuropsychiatric disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA