Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Soft Matter ; 20(3): 609-620, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38131364

RESUMEN

We have demonstrated the molecular-weight effects of adding homopolystyrene (hPS) on the evolution of perforated layers and double gyroids in polystyrene-block-poly(methyl methacrylate)-based films during isothermal annealing. Two homopolystyrenes of 2.8 and 17 kg mol-1 were used. To prepare blend films, PS-b-PMMA and hPSx (x: 2.8 or 17) were mixed at a weight-fraction ratio of 75/25 in toluene and then spin-coated at SiOx/Si. Spin coating inevitably produced films with thick edges at the periphery of the substrate. The structural evolution of the spun films was in situ characterized by grazing incidence small-angle X-ray scattering (GISAXS). The annealed films were then characterized using a scanning electron microscope (SEM). We found that thin middle regions behaved differently from thick beads for the films. The middle of the blend films mainly formed perforated layers with different spatial orders and orientations, depending on the molecular weight of added hPS chains. Hexagonally perforated layers quickly formed at 205 °C for PS-b-PMMA/hPS2.8 films. However, when hPS17 was used instead of hPS2.8, perforated layers formed with defects in PS-b-PMMA/hPS17 films annealed at 205 °C. Annealing at 240 °C improved the spatial order and orientation of perforated layers for a PS-b-PMMA/hPS17 film. Nevertheless, annealing at 240 °C inversely depressed the in-plane spatial order of perforated layers for a PS-b-PMMA/hPS2.8 film. The depression in the in-plane spatial order is ascribed to a dilution effect of added short chains. Compared to the middle regions, the thick beads went through several metastable phases, such as perpendicularly oriented perforated layers and double gyroids.

2.
Small ; 19(12): e2206787, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36592419

RESUMEN

Organic A'-site ligand structure plays a crucial role in the crystal growth of 2D perovskites, but the underlying mechanism has not been adequately understood. This problem is tackled by studying the influence of two isomeric A'-site ligands, linear-shaped n-butylammonium (n-BA+ ) and branched iso-butylammonium (iso-BA+ ), on 2D perovskites from precursor to device, with a combination of in situ grazing-incidence wide-angle X-ray scattering and density functional theory. It is found that branched iso-BA+ , due to the lower aggregation enthalpies, tends to form large-size clusters in the precursor solution, which can act as pre-nucleation sites to expedite the crystallization of vertically oriented 2D perovskites. Furthermore, iso-BA+ is less likely to be incorporated into the MAPbI3 lattice than n-BA+ , suppressing the formation of unwanted multi-oriented perovskites. These findings well explain the better device performance of 2D perovskite solar cells based on iso-BA+ and elucidate the fundamental mechanism of ligand structural impact on 2D perovskite crystallization.

3.
Small ; 19(47): e2303885, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37496030

RESUMEN

The black-to-yellow phase transition in perovskite quantum dots (QDs) is more complex than in bulk perovskites, regarding the role of surface energy. Here, with the assistance of in situ grazing-incidence wide-angle and small-angle X-ray scattering (GIWAXS/GISAXS), distinct phase behaviors of cesium lead iodide (CsPbI3 ) QD films under two different temperature profiles-instant heating-up (IHU) and slow heating-up (SHU) is investigated. The IHU process can cause the phase transition from black phase to yellow phase, while under the SHU process, the majority remains in black phase. Detailed studies and structural refinement analysis reveal that the phase transition is triggered by the removal of surface ligands, which switches the energy landscape. The lattice symmetry determines the transition rate and the coexistence black-to-yellow phase ratio. The SHU process allows longer relaxation time for a more ordered QD packing, which helps sustain the lattice symmetry and stabilizes the black phase. Therefore, one can use the lattice symmetry as a general index to monitor the CsPbI3 QD phase transition and finetune the coexistence black-to-yellow phase ratio for niche applications.

4.
IUBMB Life ; 74(8): 780-793, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34288372

RESUMEN

Prion protein is composed of a structure-unsolved N-terminal domain and a globular C-terminal domain. Under limited trypsin digestion, mouse recombinant prion protein can be cleaved into two parts at residue Lys105. Here, we termed these two fragments as the N-domain (sequence 23-105) and the C-domain (sequence 106-230). In this study, the structural properties of the N-domain, the C-domain, and the full-length protein were explored using small-angle X-ray scattering, analytical ultracentrifugation, circular dichroism spectroscopy, and the 8-anilino-1-naphthalenesulfonic acid binding assay. The conformation and size of the prion protein were found to change sensitively under the solvent conditions. The positive residues in the sequence 23-99 of the N-domain were found to be responsible for the enhanced flexibility with the salt concentration reduced below 5 mM. The C-domain containing a hydrophobic patch tends to unfold and aggregate during a salt-induced structural collapse. The N-domain collapsed together with the C-domain at pH 5.2, whereas it collapsed independently at pH 4.2. The positively charged cluster (sequence 100-105) in the N-domain contributed to protecting the exposed hydrophobic surface of the C-domain.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Priónicas , Animales , Dicroismo Circular , Proteínas Intrínsecamente Desordenadas/química , Ratones , Proteínas Priónicas/química , Dominios Proteicos
5.
Soft Matter ; 17(31): 7287-7293, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34319332

RESUMEN

Electrostatic compaction of double stranded DNA induced by a positively charged poly(amidoamine) (PAMAM) dendrimer of generation four (G4) was found to produce two unique types of DNA mesophases, in which the DNA bent into superhelices packed in a tetragonal or hexagonal lattice. The structure formed at a lower dendrimer charge density was three-dimensionally (3D) ordered, as characterized by the P41212 space group with a 41 screw axis in a tetragonal arrangement, showing that the weakly bent DNA superhelices with a pitch length of ca. 5.0 nm possessed both identical handedness and phase conservation. The 3D ordered structure transformed into a 2D mesophase at a higher dendrimer charge density, wherein the strongly bent superhelices with a pitch length of ca. 4.0 nm organized in a hexagonal lattice without lateral coherence of helical trajectory. The counterion valency of the protonic acid that is used to charge the dendrimer was found to influence the phase diagram. Under a given dendrimer charge density, the complex with a multivalent acid-protonated dendrimer tended to form structures with less curved DNA, attesting that the driving force of charge matching was reduced by increasing the counterion valency of the dendrimer.


Asunto(s)
Dendrímeros , Cristales Líquidos , ADN , ADN Superhelicoidal , Electricidad Estática
6.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884475

RESUMEN

Coaxial core/shell electrospun nanofibers consisting of ferroelectric P(VDF-TrFE) and relaxor ferroelectric P(VDF-TrFE-CTFE) are tailor-made with hierarchical structures to modulate their mechanical properties with respect to their constituents. Compared with two single and the other coaxial membranes prepared in the research, the core/shell-TrFE/CTFE membrane shows a more prominent mechanical anisotropy between revolving direction (RD) and cross direction (CD) associated with improved resistance to tensile stress for the crystallite phase stability and good strength-ductility balance. This is due to the better degree of core/shell-TrFE-CTFE nanofiber alignment and the crystalline/amorphous ratio. The coupling between terpolymer P(VDF-TrFE-CTFE) and copolymer P(VDF-TrFE) is responsible for phase stabilization, comparing the core/shell-TrFE/CTFE with the pristine terpolymer. Moreover, an impressive collective deformation mechanism of a two-length scale in the core/shell composite structure is found. We apply in-situ synchrotron X-ray to resolve the two-length scale simultaneously by using the small-angle X-ray scattering to characterize the nanofibers and the wide-angle X-ray diffraction to identify the phase transformations. Our findings may serve as guidelines for the fabrication of the electrospun nanofibers used as membranes-based electroactive polymers.


Asunto(s)
Nanofibras/química , Polivinilos/química , Dispersión del Ángulo Pequeño , Sincrotrones/instrumentación , Resistencia a la Tracción , Difracción de Rayos X/métodos
7.
Angew Chem Int Ed Engl ; 59(4): 1430-1434, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31729106

RESUMEN

A strong interaction between colistin, a last-resort antibiotic of the polymyxin family, and free lipopolysaccharide (LPS, also referred to as endotoxin), released from the Gram-negative bacterial (GNB) outer membrane (OM), has been identified that can decrease the antibacterial efficacy of colistin, potentially increasing the dose of this antibiotic required for treatment. The competition between LPS in the GNB OM and free LPS for the interaction with colistin was prevented by using a supramolecular trap to capture free LPS. The supramolecular trap, fabricated from a subnanometer gold nanosheet with methyl motifs (SAuM), blocks lipid A, preventing the interaction between lipid A and colistin. This can minimize endotoxemia and maximize the antibacterial efficacy of colistin, enabling colistin to be used at lower doses. Thus, the potential crisis of colistin resistance could be avoided.


Asunto(s)
Antibacterianos/uso terapéutico , Colistina/uso terapéutico , Animales , Antibacterianos/farmacología , Colistina/farmacología , Humanos , Ratones
8.
Nano Lett ; 18(5): 2864-2869, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29589756

RESUMEN

Endotoxicity originating from a dangerous debris (i.e., lipopolysaccharide, LPS) of Gram-negative bacteria is a challenging clinical problem, but no drugs or therapeutic strategies that can successfully address this issue have been identified yet. In this study, we report a subnanometer gold cluster that can efficiently block endotoxin activity to protect against sepsis. The endotoxin blocker consists of a gold nanocluster that serves as a flakelike substrate and a coating of short alkyl motifs that act as an adhesive to dock with LPS by compacting the intramolecular hydrocarbon chain-chain distance ( d-spacing) of lipid A, an endotoxicity active site that can cause overwhelming cytokine induction resulting in sepsis progression. Direct evidence showed the d-spacing values of lipid A to be decreased from 4.19 Å to either 3.85 or 3.54 Å, indicating more dense packing densities in the presence of subnanometer gold clusters. In terms of biological relevance, the concentrations of key pro-inflammatory NF-κB-dependent cytokines, including plasma TNF-α, IL-6, and IL-1ß, and CXC chemokines, in LPS-challenged mice showed a noticeable decrease. More importantly, we demonstrated that the treatment of antiendotoxin gold nanoclusters significantly prolonged the survival time in LPS-induced septic mice. The ultrasmall gold nanoclusters could target lipid A of LPS to deactivate endotoxicity by compacting its packing density, which might constitute a potential therapeutic strategy for the early prevention of sepsis caused by Gram-negative bacterial infection.


Asunto(s)
Oro/uso terapéutico , Lípido A/antagonistas & inhibidores , Nanopartículas del Metal/uso terapéutico , Sepsis/terapia , Animales , Citocinas/sangre , Lipopolisacáridos/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Sepsis/sangre , Sepsis/inducido químicamente
9.
Small ; 14(15): e1704310, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29498203

RESUMEN

Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC71 BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC71 BM more than that of the polymer. The deeper penetration of PC71 BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands.

10.
Soft Matter ; 14(45): 9096-9106, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30215440

RESUMEN

In eukaryotes, the compaction of chromatin fibers composed of nucleosome core particles (NCPs) connected by a linker DNA into chromosomes is highly efficient; however, the underlying folding mechanisms remain elusive. We used small angle X-ray scattering (SAXS) to investigate the influence of linker DNA length on the local structure and the interparticle interactions of the NCPs. In the presence of the linker DNA of 30 bp or less in length, the results suggest partial unwrapping of nucleosomal DNA on the NCP irrespective of the linker DNA length. Moreover, the presence of 15 bp linker DNA alleviated the electrostatic repulsion between the NCPs and prevented the formation of an ordered columnar hexagonal phase, demonstrating that the linker DNA plays an active role in chromatin folding.


Asunto(s)
ADN/química , ADN/metabolismo , Nucleosomas/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico
11.
J Immunol ; 196(6): 2799-2808, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26880762

RESUMEN

Long intergenic noncoding RNAs (lincRNAs) are long noncoding transcripts (>200 nt) from the intergenic regions of annotated protein-coding genes. One of the most highly induced lincRNAs in macrophages upon TLR ligation is lincRNA-Cox2, which was recently shown to mediate the activation and repression of distinct classes of immune genes in innate immune cells. We report that lincRNA-Cox2, located at chromosome 1 proximal to the PG-endoperoxide synthase 2 (Ptgs2/Cox2) gene, is an early-primary inflammatory gene controlled by NF-κB signaling in murine macrophages. Functionally, lincRNA-Cox2 is required for the transcription of NF-κB-regulated late-primary inflammatory response genes stimulated by bacterial LPS. Specifically, lincRNA-Cox2 is assembled into the switch/sucrose nonfermentable (SWI/SNF) complex in cells after LPS stimulation. This resulting lincRNA-Cox2/SWI/SNF complex can modulate the assembly of NF-κB subunits to the SWI/SNF complex, and ultimately, SWI/SNF-associated chromatin remodeling and transactivation of the late-primary inflammatory-response genes in macrophages in response to microbial challenge. Therefore, our data indicate a new regulatory role for NF-κB-induced lincRNA-Cox2 as a coactivator of NF-κB for the transcription of late-primary response genes in innate immune cells through modulation of epigenetic chromatin remodeling.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Inflamación/inmunología , Macrófagos Peritoneales/fisiología , Microglía/fisiología , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Ensamble y Desensamble de Cromatina , Cromosomas Humanos Par 1/genética , Ciclooxigenasa 2/genética , Humanos , Inmunidad Innata/genética , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Largo no Codificante/genética , ARN Interferente Pequeño/genética , Activación Transcripcional/genética
12.
Phys Chem Chem Phys ; 20(42): 26830-26836, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30137074

RESUMEN

Membrane thinning that resulted from peptide-binding is observed via temperature dependent small-angle X-ray scattering (SAXS). The result reveals a mean thermal thinning rate of 0.038 Å K-1 for the neat unilamellar vesicles (ULVs) of a zwitterionic phospholipid of 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (diC20:1PC) in the temperature range of 285-312 K. The thinning effect promotes greatly the association between a model antimicrobial peptide melittin and the ULV. Scaling the observed isothermal melittin-ULV bilayer thinning to that measured using low-angle X-ray diffraction from the melittin-multilamellar membranes of defined peptide-to-lipid ratios establishes temperature-dependent binding isotherms χb of the peptide-ULV as a function of free peptide concentration in solution. From the binding isotherms, temperature-dependent peptide-membrane binding constant K(T) is extracted on the basis of a modified Gouy-Chapman model. Changes in K(T) follow the linearized van't Hoff equation ln K(T) ∝ -ΔHT-1 with a constant enthalpy change ΔH = 9.6 kcal mol-1, suggesting an entropy-driven binding process prior to membrane pore formation. Correspondingly, a five-fold enhancement of K is observed in the temperature range studied. The peptide-binding strength is found to follow the growth trend of the membrane thermal thinning rate better than the lipid chain length of the three phosphocholine-based ULVs of diCn:1PC with n = 18, 20, and 22.


Asunto(s)
Membrana Dobles de Lípidos/química , Meliteno/química , Fosfatidilcolinas/química , Liposomas Unilamelares/química , Entropía , Unión Proteica , Dispersión del Ángulo Pequeño , Temperatura , Termodinámica , Difracción de Rayos X
13.
J Infect Dis ; 215(4): 636-643, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28007919

RESUMEN

Cryptosporidium parvum is an important opportunistic parasite pathogen for immunocompromised individuals and a common cause of diarrhea in young children. Previous studies have identified a panel of RNA transcripts of very low protein-coding potential in C. parvum. Using an in vitro model of human intestinal cryptosporidiosis, we report here that some of these C. parvum RNA transcripts were selectively delivered into the nuclei of host epithelial cells during C. parvum infection. Nuclear delivery of several such parasitic RNAs, including Cdg7_FLc_0990, involved heat-shock protein 70-mediated nuclear importing mechanism. Overexpression of Cdg7_FLc_0990 in intestinal epithelial cells resulted in significant changes in expression levels of specific genes, with significant overlapping with alterations in gene expression profile detected in host cells after C. parvum infection. Our data demonstrate that C. parvum transcripts of low protein-coding potential are selectively delivered into epithelial cells during infection and may modulate gene transcription in infected host cells.


Asunto(s)
Criptosporidiosis/genética , Células Epiteliales/parasitología , Interacciones Huésped-Patógeno/genética , ARN Protozoario/genética , Transcripción Genética , Línea Celular , Cryptosporidium parvum/patogenicidad , Células Epiteliales/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/parasitología , Transcriptoma
14.
Langmuir ; 33(13): 3253-3261, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28288275

RESUMEN

The nucleation and growth process of gold supercrystals in a surfactant diffusion approach is followed by simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS), supplemented with scanning electron microscopy. The results indicate that supercrystal nucleation can be activated efficiently upon placing a concentrated surfactant solution of a nematic phase on top of a gold nanocrystal solution droplet trapped in the middle of a vertically oriented capillary tube. Supercrystal nuclei comprised of tens of gold nanocubes are observed nearly instantaneously in the broadened liquid-liquid interface zone of a steep gradient of surfactant concentration, revealing a diffusion-kinetics-controlled nucleation process. Once formed, the nuclei can sediment into the naoncrystal zone below, and grow efficiently into cubic or tetragonal supercrystals of ∼1 µm size within ∼100 min. Supercrystals matured during sedimentation in the capillary can accumulate and face-to-face align at the bottom liquid-air interface of the nanocrystal droplet. This is followed by superpacking of the supercrystals into highly oriented hierarchical sheets, with a huge number of gold nanocubes aligned for largely coherent crystallographic orientations.

15.
Phys Chem Chem Phys ; 19(34): 23515-23523, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28829460

RESUMEN

The high power conversion efficiency of bulk heterojunction (BHJ) polymer solar cells can be achieved from either low crystallinity (P3TI) or high crystallinity (P6TI) of isoindigo-based donor-acceptor alternating copolymers blended with PC71BM by controlling nanophase separation using additives. P3TI shows similar device performance regardless of the type of additives, while P6TI is significantly affected by whether the additive is aliphatic or aromatic. To understand the interplays of crystallinity of polymers and the type of additive on the formation of nanomorphology of BHJ, we employed the simultaneous grazing-incidence small- and wide-angle X-ray scattering (GISAXS and GIWAXS) technique to perform the quantitative investigation. By incorporating additives, the PC71BM molecules can be easily intercalated into the P3TI polymer-rich domain and the size of the PC71BM clusters is reduced from about 24 nm to about 5 nm by either aliphatic 1,8-diiodooctane (DIO) or aromatic 1-chloronaphthalene (CN). On comparison, it is found to be more difficult for PC71BM molecules to be intercalated into the highly crystalline P6TI dense domain, and the PC71BM molecules have a higher tendency to be self-aggregated, which results in a larger size of PC71BM clusters of about 58 nm. The clusters can be reduced to about 7 nm by DIO and 13 nm by CN. The presence of crystallites in the P6TI domain can interact with the additive to tailor the crystallization of PC71BM clusters to a size similar to that of P6TI crystallites (∼12 nm) and form a connected network for efficient charge transportation. Thus, the power conversion efficiency of P6TI:PC71BM reaches its maximum of 7.04% using aromatic CN additives. This is a new finding of the effect of crystallinity, which is not observed in the common low crystalline donor-acceptor alternating copolymers such as PTB7. Our results provide a useful guideline to manipulate the desired morphology of BHJ films constructed from alternating copolymer with different crystallinity, which is critical for achieving high power conversion efficiency of solar cells.

16.
Biophys J ; 110(8): 1720-1731, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27119633

RESUMEN

The nucleosome core particle (NCP) is the basic building block of chromatin. Nucleosome-nucleosome interactions are instrumental in chromatin compaction, and understanding NCP self-assembly is important for understanding chromatin structure and dynamics. Recombinant NCPs aggregated by multivalent cations form various ordered phases that can be studied by x-ray diffraction (small-angle x-ray scattering). In this work, the effects on the supramolecular structure of aggregated NCPs due to lysine histone H4 tail acetylations, histone H2A mutations (neutralizing the acidic patch of the histone octamer), and the removal of histone tails were investigated. The formation of ordered mainly hexagonal columnar NCP phases is in agreement with earlier studies; however, the highly homogeneous recombinant NCP systems used in this work display a more compact packing. The long-range order of the NCP columnar phase was found to be abolished or reduced by acetylation of the H4 tails, acidic patch neutralization, and removal of the H3 and H2B tails. Loss of nucleosome stacking upon removal of the H3 tails in combination with other tails was observed. In the absence of the H2A tails, the formation of an unknown highly ordered phase was observed.


Asunto(s)
Histonas/química , Histonas/metabolismo , Nucleosomas/metabolismo , Acetilación , Animales , Histonas/genética , Mutación , Dominios Proteicos , Xenopus laevis
17.
J Am Chem Soc ; 138(9): 2973-6, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26909887

RESUMEN

A planar fused-ring electron acceptor (IC-C6IDT-IC) based on indacenodithiophene is designed and synthesized. IC-C6IDT-IC shows strong absorption in 500-800 nm with extinction coefficient of up to 2.4 × 10(5) M(-1) cm(-1) and high electron mobility of 1.1 × 10(-3) cm(2) V(-1) s(-1). The as-cast polymer solar cells based on IC-C6IDT-IC without additional treatments exhibit power conversion efficiencies of up to 8.71%.

18.
Langmuir ; 32(25): 6506-14, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27267733

RESUMEN

Characterization of amyloid-like aggregates through converging approaches can yield deeper understanding of their complex self-assembly mechanisms and the nature of their strong mechanical stability, which may in turn contribute to the design of novel supramolecular peptide nanostructures as functional materials. In this study, we investigated the coassembly kinetics of oppositely charged short amyloid-inspired peptides (AIPs) into supramolecular nanostructures by using confocal fluorescence imaging of thioflavin T binding, turbidity assay and in situ small-angle X-ray scattering (SAXS) analysis. We showed that coassembly kinetics of the AIP nanostructures were consistent with nucleation-dependent amyloid-like aggregation, and aggregation behavior of the AIPs was affected by the initial monomer concentration and sonication. Moreover, SAXS analysis was performed to gain structural information on the size, shape, electron density, and internal organization of the coassembled AIP nanostructures. The scattering data of the coassembled AIP nanostructures were best fitted into to a combination of polydisperse core-shell cylinder (PCSC) and decoupling flexible cylinder (FCPR) models, and the structural parameters were estimated based on the fitting results of the scattering data. The stability of the coassembled AIP nanostructures in both fiber organization and bulk viscoelastic properties was also revealed via temperature-dependent SAXS analysis and oscillatory rheology measurements, respectively.


Asunto(s)
Amiloide/química , Modelos Moleculares , Nanoestructuras/química , Péptidos/química , Benzotiazoles , Dispersión del Ángulo Pequeño , Tiazoles/química , Difracción de Rayos X
19.
Phys Chem Chem Phys ; 18(4): 3179-87, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26743265

RESUMEN

With a deformed object of a rigid rod inside, the local dislocations may be tracked relatively easily with respect to the internal rigid rod. We apply this concept on protein folding-unfolding to track the internal structural changes of an unfolded protein in solution. Proposed here is a protein internal coordination based on the major axis X of an ellipsoidal protein and the stable intrinsic transition dipole moment µ of the protein during unfolding. In this methodology, small-angle X-ray scattering (SAXS) is used to provide the protein global morphologies in the native and unfolded states. Furthermore, time-resolved fluorescence anisotropy (TRFA) provides the relative orientation between X and µ of Trp59 of the model protein cytochrome c. Hence observed in the protein unfolding with denaturants, acid, urea, or GuHCl, is the elongation of the native protein conformation along a reoriented protein major axis; accompanied are the different extents of relocations of the terminal α helices and loop structures of the protein in the corresponding unfolding.


Asunto(s)
Citocromos c/química , Animales , Caballos , Conformación Proteica , Pliegue de Proteína , Teoría Cuántica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
20.
Biochim Biophys Acta ; 1828(2): 528-34, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23123565

RESUMEN

We have studied the bilayer thinning structure of unilamellar vesicles (ULV) of a phospholipid 1,2-dierucoyl-sn-glycero-3-phosphocholine (di22:1PC) upon binding of melittin, a water-soluble amphipathic peptide. Successive thinning of the ULV bilayers with increasing peptide concentration was monitored via small-angle X-ray scattering (SAXS). Results suggest that the two leaflets of the ULV of closed bilayers are perturbed and thinned asymmetrically upon free peptide binding, in contrast to the centro-symmetric bilayer thinning of the substrate-oriented multilamellar membranes (MLM) with premixed melittin. Moreover, thinning of the melittin-ULV bilayer associates closely with peptide concentration in solution and saturates at ~4%, compared to the ~8% maximum thinning observed for the correspondingly premixed peptide-MLM bilayers. Linearly scaling the thinning of peptide-ULV bilayers to that of the corresponding peptide-MLM of a calibrated peptide-to-lipid ratio, we have deduced the number of bound peptides on the ULV bilayers as a function of free peptide concentration in solution. The hence derived X-ray-based binding isotherm allows extraction of a low binding constant of melittin to the ULV bilayers, on the basis of surface partition equilibrium and the Gouy-Chapman theory. Moreover, we show that the ULV and MLM bilayers of di22:1PC share a same thinning constant upon binding of a hydrophobic peptide alamethicin; this result supports the linear scaling approach used in the melittin-ULV bilayer thinning for thermodynamic binding parameters of water-soluble peptides.


Asunto(s)
Biofisica/métodos , Membrana Dobles de Lípidos/química , Meliteno/química , Péptidos/química , Liposomas Unilamelares/química , Alameticina/química , Análisis de Fourier , Modelos Estadísticos , Unión Proteica , Dispersión de Radiación , Dispersión del Ángulo Pequeño , Termodinámica , Agua/química , Difracción de Rayos X/métodos , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA