Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 108(24): 240404, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23004242

RESUMEN

A degenerate Fermi gas is rapidly quenched into the regime of strong effective repulsion near a Feshbach resonance. The spin fluctuations are monitored using speckle imaging and, contrary to several theoretical predictions, the samples remain in the paramagnetic phase for an arbitrarily large scattering length. Over a wide range of interaction strengths a rapid decay into bound pairs is observed over times on the order of 10ℏ/E(F), preventing the study of equilibrium phases of strongly repulsive fermions. Our work suggests that a Fermi gas with strong short-range repulsive interactions does not undergo a ferromagnetic phase transition.

2.
Phys Rev Lett ; 106(1): 010402, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21231722

RESUMEN

Spin fluctuations and density fluctuations are studied for a two-component gas of strongly interacting fermions along the Bose-Einstein condensate-BCS crossover. This is done by in situ imaging of dispersive speckle patterns. Compressibility and magnetic susceptibility are determined from the measured fluctuations. This new sensitive method easily resolves a tenfold suppression of spin fluctuations below shot noise due to pairing, and can be applied to novel magnetic phases in optical lattices.

3.
Phys Rev Lett ; 105(4): 040402, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20867822

RESUMEN

We study density profiles of an ideal Fermi gas and observe Pauli suppression of density fluctuations (atom shot noise) for cold clouds deep in the quantum degenerate regime. Strong suppression is observed for probe volumes containing more than 10 000 atoms. Measuring the level of suppression provides sensitive thermometry at low temperatures. After this method of sensitive noise measurements has been validated with an ideal Fermi gas, it can now be applied to characterize phase transitions in strongly correlated many-body systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA