Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(8): 087001, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39241722

RESUMEN

Under certain symmetry-breaking conditions, a superconducting system exhibits asymmetric critical currents, dubbed the "superconducting diode effect." Recently, systems with the ideal superconducting diode efficiency or unidirectional superconductivity have received considerable interest. In this work, we report the study of Al-InAs nanowire-Al Josephson junctions under microwave irradiation and magnetic fields. We observe an enhancement of superconducting diode effect under microwave driving, featured by a horizontal offset of the zero-voltage step in the voltage-current characteristic that increases with microwave power. Devices reach the unidirectional superconductivity regime at sufficiently high driving amplitudes. The offset changes sign with the reversal of the magnetic field direction. Meanwhile, the offset magnitude exhibits a roughly linear response to the microwave power in dBm when both the power and the magnetic field are large. The signatures observed are reminiscent of a recent theoretical proposal using the resistively shunted junction (RSJ) model. However, the experimental results are not fully explained by the RSJ model, indicating a new mechanism for unidirectional superconductivity that is possibly related to nonequilibrium dynamics or dissipation in periodically driven superconducting systems.

2.
Nano Lett ; 23(14): 6497-6503, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37450769

RESUMEN

We report an experimental study of proximity induced superconductivity in planar Josephson junction devices made from free-standing InAs nanosheets. The nanosheets are grown by molecular beam epitaxy, and the Josephson junction devices are fabricated by directly contacting the nanosheets with superconductor Al electrodes. The fabricated devices are explored by low-temperature carrier transport measurements. The measurements show that the devices exhibit a gate-tunable supercurrent, multiple Andreev reflections, and a good quality superconductor-semiconductor interface. The superconducting characteristics of the Josephson junctions are investigated at different magnetic fields and temperatures and are analyzed based on the Bardeen-Cooper-Schrieffer (BCS) theory. The measurements of the ac Josephson effect are also conducted under microwave radiations with different radiation powers and frequencies, and integer Shapiro steps are observed. Our work demonstrates that InAs nanosheet based hybrid devices are desired systems for investigating the forefront of physics, such as two-dimensional topological superconductivity.

3.
Nanoscale ; 16(21): 10333-10339, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738596

RESUMEN

We report an experimental study of quantum point contacts defined in a high-quality strained germanium quantum well with layered electric gates. At a zero magnetic field, we observed quantized conductance plateaus in units of 2e2/h. Bias-spectroscopy measurements reveal that the energy spacing between successive one-dimensional subbands ranges from 1.5 to 5 meV as a consequence of the small effective mass of the holes and the narrow gate constrictions. At finite magnetic fields perpendicular to the device plane, the edges of the conductance plateaus get split due to the Zeeman effect and Landé g factors were estimated to be ∼6.6 for the holes in the germanium quantum well. We demonstrate that all quantum point contacts in the same device have comparable performances, indicating a reliable and reproducible device fabrication process. Thus, our work lays a foundation for investigating multiple forefronts of physics in germanium-based quantum devices that require quantum point contacts as building blocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA