Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Medicine (Baltimore) ; 103(12): e37494, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517995

RESUMEN

BACKGROUND: To investigate the effect of concurrent strength combined with endurance training on the lipid and glucose profile of type 2 diabetes mellitus (T2DM) using Meta-analysis. METHODS: The literature was searched from PubMed, Web of Science, EBSCO, and China National Knowledge Infrastructure(CNKI) databases for relevant randomized controlled trials with dates from the date of establishment to June 2023, and the included studies were individually assessed according to the Cochrane Risk of Bias tool in the Cochrane Systematic Assessor's Handbook, and the data were analyzed using RevMan 5.4 analysis software to analyze and process the data. RESULTS: A total of 9 articles were included, including 589 subjects, including 308 in the experimental group and 281 in the control group. The results of Meta analysis showed that concurrent strength combined with endurance training improved TC (SMD = -1.12, 95% CI = [-1.81, -0.44], P < 0.01), TG (SMD = -0.46, 95% CI = [-0.85, -0.07], P < 0.05), LDL-C (SMD = -1.3, 95% CI = [-2.09, -0.50], P < 0.01), HDL-C (SMD = 0.61, 95% CI = [0.05, 1.17], P < 0.05), FBG (SMD = -0.65, 95% CI = [-1.27, -0.04], P < 0.05), HOMA-IR (SMD = -1.23, 95% CI = [-2.40, -0.06], P < 0.05). CONCLUSION: Concurrent strength combined with endurance training has a positive effect on the improvement of lipid and glucose profile in patients with type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Entrenamiento Aeróbico , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 2/terapia , Control Glucémico , Lípidos , Glucosa
2.
Front Nutr ; 11: 1335950, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544753

RESUMEN

This study examined the synergistic effects of combining Rhodiola rosea (RHO) and caffeine (CAF) supplementation on muscle endurance and explosiveness in SD rats and human subjects, encompassing individuals without prior exercise training experience and seasoned aerobic athletes. Male SD rats and healthy human volunteers were randomly divided into four groups: CAF, RHO, CAF + RHO, and a control group (CTR). Nutritional supplements were administered throughout the training period, and pre-and post-measurement data were collected. In both the rat model and human subjects, the RHO+CAF group demonstrated significantly greater effects compared to the use of RHO or CAF supplements individually. Rats in the RHO+CAF group demonstrated extended running and swimming times and an increase in erythropoietin (EPO) mRNA expression in comparison to the CTR. Blood parameters, such as serum EPO levels, were enhanced in the CAF + RHO group, while blood urea nitrogen (BUN) and lactate (LA) levels significantly decreased in both the RHO and CAF + RHO groups. Hepatic and muscle glycogen contents were also higher in these groups. The gene expression analysis in rats demonstrated an elevation in the mRNA levels of glucose transporter-4 (GLUT-4), peroxisome proliferator-activated receptor γ coactivator-1 alpha (PGC-1α), Monocarboxylate transporter 1 (MCT-1), and Heme Oxygenase-1 (HO-1) in both the RHO and RHO+CAF groups. For individuals without prior aerobic training experience, the RHO+CAF group showed significant improvements compared to the CTR group in maximal oxygen consumption (VO2max), 5 km run, countermovement jump (CMJ), standing long jump, and 30 m sprint. For individuals with years of aerobic training experience, the RHO+CAF group exhibited enhanced performance in the 5 km run, CMJ, and standing long jump compared to the CTR group. In conclusion, the continuous 30 days supplementation of RHO, combined with a single dose of CAF, demonstrated superior effects on muscle endurance and explosiveness in both animal and human studies when compared to the use of RHO or CAF individually.

3.
Heliyon ; 10(14): e34617, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114047

RESUMEN

This study aimed to explore the impact of caffeine (CAF) encapsulated in transferrin-modified, sterically-stabilized liposomes (Tf-SSL) on the physical performance of rats, specifically forelimb grip strength, running, and swimming. The brain-targeted drug delivery system, Tf-SSL, was used for the administration of caffeine. 168 male Sprague-Dawley (SD) rats were randomly assigned to different groups, including swimming, running, running wheel, and strength groups. Each group was further subdivided into high, medium, and low dose free caffeine (HCAF, MCAF, LCAF) and Tf-SSL CAF groups, along with a control group (CON). The strength, swimming, and running groups underwent training for four weeks, three times per week. The running wheel group was placed in rearing cages for a one-week adaptation period. After the final training session, the resistance, swimming, running, and running wheel exercise capacities of the rats were tested. The rats were administered treatment via tail vein injection, while the blank CON group received 0.9 % saline solution without treatment throughout the entire process. The results demonstrated a Tf-SSL CAF group encapsulation rate of 70.58 ± 5.14 %. Increasing the concentration of supplemented caffeine led to enhanced forelimb grip strength in rats, with significant differences observed in HCAF alone group, medium-dose Tf-SSL CAF (MTf-SSL CAF), and high-dose Tf-SSL CAF (HTf-SSL CAF) groups compared to the CON group. In the running and swimming experiments, higher caffeine supplementation concentrations correlated with increased running and swimming time to exhaustion, and the MTf-SSL CAF group showed longer running and swimming time compared to the HCAF alone group. The results of rat striatal dopamine levels indicated that increased caffeine supplementation concentrations led to higher dopamine secretion, with significantly different striatal concentrations in the HCAF group, MTf-SSL CAF group, and HTf-SSL CAF group compared to the CON group. The running wheel experiment revealed that rats in the medium- and high-dose Tf-SSL CAF groups exhibited greater 6-h running distances than the HCAF group and CON group. In conclusion, caffeine supplementation improved the physical performance of rats, with the high concentration CAF group outperforming the low and medium concentration groups. Furthermore, Tf-SSL CAF demonstrated superior physical enhancement compared to caffeine supplementation alone.

4.
Nat Commun ; 15(1): 6483, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090100

RESUMEN

Three-dimensional (3D) imaging of individual atoms is a critical tool for discovering new physical phenomena and developing new technologies in microscopic systems. However, the current single-atom-resolved 3D imaging methods are limited to static circumstances or a shallow detection range. Here, we demonstrate a generic dynamic 3D imaging method to track the extensive motion of single ions by exploiting the engineered point-spread function (PSF). We show that the image of a single ion can be engineered into a helical PSF, thus enabling single-snapshot acquisition of the position information of the ion in the trap. A preliminary application of this technique is demonstrated by recording the 3D motion trajectory of a single trapped ion and reconstructing the 3D dynamical configuration transition between the zig and zag structures of a 5-ion crystal. This work opens the path for studies on single-atom-resolved dynamics in both trapped-ion and neutral-atom systems.

5.
Sci Rep ; 14(1): 16558, 2024 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019997

RESUMEN

The purpose of this study was to compare the effects of High-Intensity Interval Training (HIIT) and Moderate-Intensity Continuous Training (MICT) on weight, body composition, blood lipid indicators, and metabolic status in college students living with obesity. The study focused on a sample of 40 college students living with obesity, including 20 males and 20 females, aged between 18 and 25. Participants were randomly assigned to either the HIIT group or the MICT group. Both groups underwent an 8-week intervention, consisting of three sessions per week with alternate-day training. The MICT group's training consisted of continuous aerobic exercise for 35 min at 60-70% of maximum heart rate. The HIIT group engaged in 28 min of alternating high-intensity and low-intensity exercise, where the high-intensity phase was at 85-90% of maximum heart rate for 4 min, followed by a 3-min recovery period at 50-60% of maximum heart rate, repeated four times. Both groups underwent heart rate monitoring before and after the training sessions to ensure the accuracy of the training intensity. Within each group, further distinctions were made based on gender, resulting in the following subgroups: Male HIIT group (n = 10), Female HIIT group (n = 10), Male MICT group (n = 10), and Female MICT group (n = 10). Differences in anthropometric and biochemical indicators among the groups were analyzed, and the different effects of the two intervention strategies on the obese college student population were comprehensively evaluated. Compared to the baseline assessment, the HIIT group showed a more favorable declining trend than the MICT group in terms of body morphology and body composition, particularly in the aspect of body fat percentage (BF%). The male HIIT group, female HIIT group, male MICT group, and female MICT group respectively reduced by - 23.71%, - 26.76%, - 9.81%, - 7.16%. Male and female HIIT group experienced a more pronounced decrease compared to the MICT group, with the female HIIT group reducing an additional 3.75% more than the male HIIT group. Regarding intergroup differences, BF% significant differences were shown between male MICT group and the HIIT group (P < 0.05), and female MICT group and the HIIT group (P < 0.01). In terms of biochemical indicators, the HIIT group also presented a more favorable declining trend compared to the MICT group, with male HIIT participants showing more reduction than female HIIT participants, especially in total cholesterol (TC) (10.64%), low-density lipoprotein cholesterol (LDL-C) (11.73%), alanine aminotransferase (ALT) (11.99%), and uric acid (UA) (11.76%). Regarding triglycerides (TG), significant intergroup differences were observed between male MICT and HIIT groups (P < 0.01) and female MICT and HIIT groups (P < 0.01). Concerning ALT, a significant difference was shown between female MICT and HIIT groups (P < 0.01), while no significant difference was observed among male participants. Overall, for college students living with obesity, both HIIT and MICT have shown positive effects. Among these, HIIT demonstrates greater effectiveness compared to MICT in BF% and biochemical markers.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Obesidad , Estudiantes , Humanos , Masculino , Femenino , Entrenamiento de Intervalos de Alta Intensidad/métodos , Obesidad/terapia , Obesidad/metabolismo , Adulto Joven , Adulto , Adolescente , Composición Corporal , Peso Corporal , Frecuencia Cardíaca , Ejercicio Físico/fisiología , Universidades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA