Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007651

RESUMEN

Carbon dioxide (CO2) coupled with epoxide to generate cyclic carbonate stands out in carbon neutrality due to its 100% atom utilization. In this work, the mechanism of CO2 cycloaddition with propylene oxide (PO) cocatalyzed by windmill-shaped polyoxovanadate, [(C2N2H8)4(CH3O)4VIV4VV4O16]·4CH3OH (V8-1), and n-Bu4NX (X = Br, I) was thoroughly investigated using density functional theory (DFT) calculations. The ring-opening, CO2-insertion, and ring-closing steps of the process were extensively studied. Our work emphasizes the synergistic effect between V8-1 and n-Bu4NX (X = Br, I). Through the analysis of an independent gradient model based on Hirshfeld partition (IGMH), it was found that the attack of n-Bu4NX (X = Br, I) on Cß of PO triggers a distinct attractive interaction between the active fragment and the surrounding framework, serving as the primary driving force for the ring opening of PO. Furthermore, the effect of different cocatalysts was explored, with n-Bu4NI being more favorable than n-Bu4NBr. Moreover, the role of V8-1 in the CO2 cycloaddition reaction was clarified as not only acting as Lewis acid active sites but also serving as "electron sponges". This work is expected to advance the development of novel catalysts for organic carbonate formation.

2.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675557

RESUMEN

The design and synthesis of organic photocatalysts remain a great challenge due to their strict structural constraints. However, this could be mitigated by achieving structural flexibility by constructing permanent porosity into the materials. Conjugated microporous polymers (CMPs) are an emerging class of porous materials with an amorphous, three-dimensional network structure, which makes it possible to integrate the elaborate functional groups to enhance photocatalytic performance. Here, we report the synthesis of a novel CMP, named TAPFc-TFPPy-CMP, constructed by 1,1'3,3'-tetra(4-aminophenyl)ferrocene (TAPFc) and 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) monomers. The integration of the p-type dopant 7,7,8,8-tetracyanoquinodimethane (TCNQ) into the TAPFc-TFPPy-CMP improved the light adsorption performance, leading to a decrease in the optical bandgap from 2.00 to 1.43 eV. The doped CMP (TCNQ@TAPFc-TFPPy-CMP) exhibited promising catalytic activity in photocatalytic CO2 reduction under visible light, yielding 546.8 µmol g-1 h-1 of CO with a selectivity of 96% and 5.2 µmol g-1 h-1 of CH4. This represented an 80% increase in the CO yield compared to the maternal TAPFc-TFPPy-CMP. The steady-state photoluminescence (PL) and fluorescence lifetime (FL) measurements reveal faster carrier separation and transport after the doping. This study provides guidance for the development of organic photocatalysts for the utilization of renewable energy.

3.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792104

RESUMEN

The effective capture and recovery of radioiodine species associated with nuclear fuel reprocessing is of significant importance in nuclear power plants. Porous materials have been proven to be one of the most effective adsorbents for the capture of radioiodine. In this work, we design and synthesize a series of conjugated microporous polymers (CMPs), namely, TPDA-TFPB CMP, TPDA-TATBA CMP, and TPDA-TECHO CMP, which are constructed based on a planar rectangular 4-connected organic monomer and three triangular 3-connected organic monomers, respectively. The resultant CMPs are characterized using various characterization techniques and used as effective adsorbents for iodine capture. Our experiments indicated that the CMPs exhibit excellent iodine adsorption capacities as high as 6.48, 6.25, and 6.37 g g-1 at 348 K and ambient pressure. The adsorption mechanism was further investigated and the strong chemical adsorption between the iodine and the imine/tertiary ammonia of the CMPs, 3D network structure with accessible hierarchical pores, uniform micromorphology, wide π-conjugated structure, and high-density Lewis-base sites synergistically contribute to their excellent iodine adsorption performance. Moreover, the CMPs demonstrated good recyclability. This work provides guidance for the construction of novel iodine adsorbent materials with high efficiency in the nuclear power field.

4.
J Am Chem Soc ; 145(17): 9520-9529, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37076447

RESUMEN

Covalent organic frameworks (COFs) hold the potential in converting CO2 with water into value-added fuels and O2 to save the deteriorating ecological environment. However, reaching high yield and selectivity is a grand challenge under metal-, photosensitizer-, or sacrificial reagent-free conditions. Here, inspired by microstructures of natural leaves, we designed triazine-based COF membranes with the integration of steady light-harvesting sites, efficient catalytic center, and fast charge/mass transfer configuration to fabricate a novel artificial leaf for the first time. Significantly, a record high CO yield of 1240 µmol g-1 in a 4 h reaction, approximately 100% selectivity, and a long lifespan (at least 16 cycles) were achieved under gas-solid conditions without using any metal, photosensitizer, or sacrificial reagent. Unlike the existing knowledge, the chemical structural unit of triazine-imide-triazine and the unique physical form of the COF membrane are predominant for such a remarkable photocatalysis. This work opens a new pathway to simulating photosynthesis in leaves and may motivate relevant research in the future.

5.
Inorg Chem ; 62(38): 15673-15679, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37708077

RESUMEN

Polyoxometalates (POMs) have a broad array of applied platforms with well-characterized catalysis to achieve N-H bond activation. Herein, the mechanism of the Anderson-type POM-based catalyst [FeIIIMoVI6O18{(OCH2)3CNH2}2]3- ([TrisFeIIIMoVI6O18]3-, Tris = {(OCH2)3CNH2}2) for the N-H bond activation of hydrazine (PhHNNHPh) was investigated by density functional theory calculations. The results reveal that [TrisFeIIIMoVI6O18]3- as the active species is responsible for the continuous abstraction of two electrons and two protons of PhHNNHPh via a proton-coupled electron transfer pathway, resulting in the activation of two N-H bonds in PhHNNHPh and thus the product PhNNPh. H2O2 acts as an oxidant to regulate catalyst regeneration. Based on the proposed catalytic mechanism, the key role of the heteroatom FeIII in [TrisFeIIIMoVI6O18]3- was disclosed. The d-orbital of FeIII in [TrisFeIIIMoVI6O18]3- acts as an electron receptor to promote the electron transfer (ET) in the rate-determining step (RDS) of the catalytic cycle. The substitution of the heteroatom FeIII of [TrisFeIIIMoVI6O18]3- with CoIII, RuIII, or MnIII is expected to improve the catalytic activity for several reasons: (i) the unoccupied molecular orbitals of POM-based compounds containing CoIII or RuIII are low, which is beneficial for the ET of RDS; (ii) For N-H bond activation catalyzed by the MnIII-containing POM-based compound, the transition state of RDS is stable because the d-orbital of its active site is half-filled, which results in a low free-energy barrier.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38064627

RESUMEN

Objective: China has an aging society; the issue of aging is becoming increasingly serious. This study aimed to explore the factors influencing the demand for medical treatment and health care services among the elderly and offer countermeasures and suggestions. Methods: In this cross-sectional study, a questionnaire method was used to inquire about 386 elderly people in three communities from Bincheng District, Binzhou City, and Shandong Province. Results: The demand of community-dwelling elderly for chronic disease medication consultation services was 91.71%, with 53.88% in urgent need of the service. Their demand for dietary guidance was 91.19%, with 52.07% having a great demand for the guidance. The demand for medical expenses guarantee was 87.82%, and those in great need accounted for 47.93%. 84.98% required hospice care service, with 31.87% in great need of the service. The demand for psychological and spiritual services was 84.20% and 44.56% of them reported high demand for it. From multiple regression analysis, the factors influencing the demand of the elderly for medical treatment and health care services were identified as the sources of income, harmonious relationship with their children, medical expenses guarantee, and psychological and spiritual services, with statistical significance (P < .05). Conclusions: Chronic disease medication consultation service, dietary guidance, and medical expenses guarantee are listed as the top three demands among the elderly living in the community from medical treatment and health care services. This warrants an urgent need to establish a multi-level, personalized, and diversified medical treatment and health care model, with improved long-term care insurance system, and trained medical professionals to provide professional services in order to improve the quality of life and health level of the elderly.

7.
Angew Chem Int Ed Engl ; 62(37): e202309030, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37488072

RESUMEN

Precise control of the structure and spatial distance of Lewis acid (LA) and Lewis base (LB) sites in a porous system to construct efficient solid frustrated Lewis pair (FLP) catalyst is vital for industrial application but remains challenging. Herein, we constructed FLP sites in a polyoxometalate (POM)-based metal-organic framework (MOF) by introducing coordination-defect metal nodes (LA) and surface-basic POM with abundant oxygen (LB). The well-defined and unique spatial conformation of the defective POM-based MOF ensure that the distance between LA and LB is at ~4.3 Å, a suitable distance to activate H2 . This FLP catalyst can heterolytically dissociate H2 into active Hδ- , thus exhibiting high activity in hydrogenation, which is 55 and 2.7 times as high as that of defect-free POM-based MOF and defective MOF without POM, respectively. This work provides a new avenue toward precise design multi-site catalyst to achieve specific activation of target substrate for synergistic catalysis.

8.
Angew Chem Int Ed Engl ; 62(22): e202300826, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36988088

RESUMEN

Metal-nitrogen-carbon catalysts, as promising alternative to platinum-based catalysts for oxygen reduction reaction (ORR), are still highly expected to achieve better performance by modulating the composition and spatial structure of active site. Herein, we constructed the non-planar nest-like [Fe2 S2 ] cluster sites in N-doped carbon plane. Adjacent double Fe atoms effectively weaken the O-O bond by forming a peroxide bridge-like adsorption configuration, and the introduction of S atoms breaks the planar coordination of Fe resulting in greater structural deformation tension, lower spin state, and downward shifted Fe d-band center, which together facilitate the release of OH* intermediate. Hence, the non-planar [Fe2 S2 ] cluster catalyst, with a half-wave potential of 0.92 V, displays superior ORR activity than that of planar [FeN4 ] or [Fe2 N6 ]. This work provides insights into the co-regulation of atomic composition and spatial configuration for efficient oxygen reduction catalysis.

9.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234750

RESUMEN

Transforming CO2 into value-added chemicals has been an important subject in recent years. The development of a novel heterogeneous catalyst for highly effective CO2 conversion still remains a great challenge. As an emerging class of porous organic polymers, covalent organic frameworks (COFs) have exhibited superior potential as catalysts for various chemical reactions, due to their unique structure and properties. In this study, a layered two-dimensional (2D) COF, IM4F-Py-COF, was prepared through a three-component condensation reaction. Benzimidazole moiety, as an ionic liquid precursor, was integrated onto the skeleton of the COF using a benzimidazole-containing building unit. Ionization of the benzimidazole framework was then achieved through quaternization with 1-bromobutane to produce an ionic liquid-immobilized COF, i.e., BMIM4F-Py-COF. The resulting ionic COF shows excellent catalytic activity in promoting the chemical fixation of CO2 via reaction with epoxides under solvent-free and co-catalyst-free conditions. High porosity, the one-dimensional (1D) open-channel structure of the COF and the high catalytic activity of ionic liquid may contribute to the excellent catalytic performance. Moreover, the COF catalyst could be reused at least five times without significant loss of its catalytic activity.

10.
Molecules ; 27(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014397

RESUMEN

As one of the main nuclear wastes generated in the process of nuclear fission, radioactive iodine has attracted worldwide attention due to its harm to public safety and environmental pollution. Therefore, it is of crucial importance to develop materials that can rapidly and efficiently capture radioactive iodine. Herein, we report the construction of three electron-rich porous organic polymers (POPs), denoted as POP-E, POP-T and POP-P via Schiff base polycondensations reactions between Td-symmetric adamantane knot and four-branched "linkage" molecules. We demonstrated that all the three POPs showed high iodine adsorption capability, among which the adsorption capacity of POP-T for iodine vapor reached up to 3.94 g·g-1 and the removal rate of iodine in n-hexane solution was up to 99%. The efficient iodine capture mechanism of the POP-T was investigated through systematic comparison of Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) before and after iodine adsorption. The unique π-π conjugated system between imine bonds linked aromatic rings with iodine result in charge-transfer complexes, which explains the exceptional iodine capture capacity. Additionally, the introduction of heteroatoms into the framework would also enhance the iodine adsorption capability of POPs. Good retention behavior and recycling capacity were also observed for the POPs.


Asunto(s)
Yodo , Neoplasias de la Tiroides , Electrones , Humanos , Yoduros , Yodo/química , Radioisótopos de Yodo , Polímeros/química , Porosidad , Bases de Schiff , Espectroscopía Infrarroja por Transformada de Fourier
11.
Phys Chem Chem Phys ; 22(9): 5249-5254, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32091507

RESUMEN

In this work, the mechanism of water oxidation catalyzed by an Ru-based complex [Ru(L)]+ (L = 5,5-chelated 2-carboxyl-phen, 2,2';6',2''-terpyridine) was studied by density functional theory (DFT) calculations. In [Ru(L)]+, a carboxyl group is included in the second coordination sphere and plays an important role in the catalytic process. In the oxidation activation stage of water oxidation catalysis, the carboxyl group is proposed as a promising proton acceptor to promote proton transfer, which results in active RuV[double bond, length as m-dash]O species. Then, O-O bond formation can proceed via water nucleophilic attack (WNA) or oxo-oxo coupling mechanisms. In the O2 release stage, similar to the oxidation activation process, the carboxyl group promotes proton transfer as a promising proton acceptor. In the present work, the favorable mechanism is WNA that involves proton transfer to the carboxyl group. It is expected that this work will provide meaningful information for synthesizing excellent water oxidation catalysts (WOCs).

12.
Inorg Chem ; 58(23): 15751-15757, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31710211

RESUMEN

The performance of MnII/III-monosubstituted heteropolytungstates [MnIII(H2O)GeW11O39]5- ([GT-MnIII-OH2]5-, where GT = GeW11O39) and [MnII(H2O)GeW11O39]6- ([GT-MnII-OH2]6-) as water oxidation catalysts at pH 9 was explored using density functional theory calculations. The counterion effect was fully considered, in which five and six Na+ ions were included in the calculations for water oxidation catalyzed by [GT-MnIII-OH2]5- and [GT-MnII-OH2]6-, respectively. The process of water oxidation catalysis was divided into three elemental stages: (i) oxidative activation, (ii) O-O bond formation, and (iii) O2 evolution. In the oxidative activation stage, two electrons and two protons are removed from [Na5-GT-MnIII-OH2] and three electrons and two protons are removed from [Na6-GT-MnII-OH2]. Therefore, the MnIV-O• species [Na5-GT-MnIV-O•] is obtained. Two mechanisms, (i) water nucleophilic attack and (ii) oxo-oxo coupling, were demonstrated to be competitive in O-O bond formation triggered from [Na5-GT-MnIV-O•]. In the last stage, the O2 molecule could be readily evolved from the peroxo or dinuclear species and the catalyst returns to the ground state after the coordination of a water molecule(s).

13.
Inorg Chem ; 58(24): 16518-16523, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31774665

RESUMEN

The design and synthesis of polynuclear metal cluster-based coordination cages is of considerable interest due to their appealing structural characteristics and potential applications. Herein, we report a calix[4]resorcinarene-based [Co12] coordination cage, [Co12(TPC4R-I)2(1,3-BDC)10(µ3-OH)4(H2O)10(DMF)2]·7DMF·23H2O (1), assembled with 2 bowl-shaped calix[4]resorcinarenes (TPC4R-I), 10 angular 1,3-benzenedicarboxylates (1,3-BDC), and 12 Co(II) cations. Remarkably, it is shown to be a highly efficient recyclable heterogeneous catalyst for CO2 conversion due to its exposed Co(II) Lewis acid sites.

14.
Opt Express ; 25(15): 16907-16915, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28789190

RESUMEN

Manipulating the polarization states of electromagnetic waves, a fundamental issue in optics, has attracted intense attention. However, most of the reported devices are either so bulky or with specific functionalities. Here we propose a conceptually new approach to design an ultra-thin meta-waveplate (MWP) with anomalous functionalities. By elaborately designing the structural units of the metasurface, the incident right circular polarized (CP) light carrying spin angular momentum can be coupled into two surface plasmon modes with opposite orbital angular momenta which interaction with each other in the near-field, degenerating to a linear polarized (LP) light in the far-filed. The incoming spin angular momentum is annihilated and the designed MWP can function as a quarter-waveplate. However, compared with the conventional quarter-waveplates, our designed MWP owns the unidirectional function (only converting CP light to LP light) with a certain output polarization angle, which provides an extra degree of freedoms in controlling the polarization. Moreover, the designed MWP can function as a chiral material and exhibiting optical rotation properties within a broad bandwidth.

15.
Opt Express ; 22(16): 19401-10, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25321024

RESUMEN

Plasmonic structures with high symmetry, such as double-identical gap split ring resonators, possess dark eigenmodes. These dark eigenmodes are dominated by magnetic dipole and/or higher-order multi-poles such as electric quadrapoles. Consequently these dark modes interact very weakly with the surrounding environment, and can have very high quality factors (Q). In this work, we have studied, experimentally as well as theoretically, these dark eigenmodes in terahertz metamaterials. Theoretical investigations with the help of classical perturbation theory clearly indicate the existence of these dark modes in symmetric plasmonic metamaterials. However, these dark modes can be excited experimentally by breaking the symmetry within the constituting metamaterial resonators cell, resulting in high quality factor resonance mode. The symmetry broken metamaterials with such high quality factor can pave the way in realizing high sensitivity sensors, in addition to other applications.

16.
J Colloid Interface Sci ; 673: 679-689, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38901358

RESUMEN

Photodynamic therapy (PDT) is an emerging treatment but often restricted by the availability of oxygen. Enhancing the lifespan of singlet oxygen (1O2) by fractionated generation is an effective approach to improve the efficacy of PDT. Herein, an imine-based nanoscale COF (TpDa-COF) has been synthesized and functionalized with a pyridone-derived structure (Py) to create a 1O2-storing nanoplatform TpDa-COF@Py, which can reversibly capture and release 1O2. Under 660 nm laser exposure, Py interacts with 1O2 produced by the porphyrin motif in COF backbones to generate 1O2-enriched COF (TpDa-COF@Py + hv), followed by the release of 1O2 through retro-Diels-Alder reactions at physiological temperatures. The continuous producing and releasing of 1O2 upon laser exposure leads to an "afterglow" effect and a prolonged 1O2 lifespan. In vitro cytotoxicity assays demonstrates that TpDa-COF@Py + hv exhibits an extremely low half-maximal inhibitory concentration (IC50) of 0.54 µg/mL on 4T1 cells. Remarkably, the Py-mediated TpDa-COF@Py nanoplatform demonstrates enhanced cell-killing capability under laser exposure, attributed to the sustained 1O2 cycling, compared to TpDa-COF alone. Further in vivo assessment highlights the potential of TpDa-COF@Py + hv as a promising strategy to enhance phototheronostics and achieve effective tumor regression. Accordingly, the study supplies a generalized 1O2 "afterglow" nanoplatform to improve the effectiveness of PDT.

17.
Analyst ; 138(5): 1459-66, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23325000

RESUMEN

A novel biosensing platform was developed by combining the advantages of electrospun poly(vinyl alcohol) (PVA)/chitosan nanofibers and graphene oxides (GO). Glucose oxidase (GOD) was employed as a model enzyme. By co-electrospinning the solution of PVA, chitosan, GOD and GO, the PVA/chitosan/GOD/GO nanofibers were directly modified on the platinum (Pt) electrode. The UV-vis spectra and the FTIR spectra were used to characterize the GO nanosheets. The morphologies of fabricated electrospun nanofibers were characterized by high resolution scanning electron microscopy. After a thin layer of nafion was modified on the surface of matrix, the as-prepared electrode was used to detect glucose. The electrode exhibited great advantages in high sensitivity, low detection limit and wide linear range. In the meantime, the electrode showed good stability, acceptable reproducibility, and excellent anti-interference capability for ascorbic acid, uric acid, lactose and sucrose. Moreover, the novel biosensor was successfully applied for the glucose determination in human serum samples. The mechanism of efficient biosensing of the nafion/PVA/chitosan/GOD/GO/Pt electrode was analyzed in detail and the results show that it can be due to the synergy effects of electrospun nanofibers and GO nanosheets.


Asunto(s)
Técnicas Biosensibles/métodos , Glucemia/análisis , Quitosano/química , Grafito/química , Nanofibras/química , Alcohol Polivinílico/química , Aspergillus niger/enzimología , Enzimas Inmovilizadas/química , Glucosa Oxidasa/química , Humanos , Modelos Moleculares , Nanofibras/ultraestructura , Óxidos/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
World J Clin Cases ; 11(8): 1741-1752, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36970002

RESUMEN

Achalasia cardia, type of esophageal dynamic disorder, is a relatively rare primary motor esophageal disease characterized by the functional loss of plexus ganglion cells in the distal esophagus and lower esophageal sphincter. Loss of function of the distal and lower esophageal sphincter ganglion cells is the main cause of achalasia cardia, and is more likely to occur in the elderly. Histological changes in the esophageal mucosa are considered pathogenic; however, studies have found that inflammation and genetic changes at the molecular level may also cause achalasia cardia, resulting in dysphagia, reflux, aspiration, retrosternal pain, and weight loss. Currently, the treatment options for achalasia focus on reducing the resting pressure of the lower esophageal sphincter, helping to empty the esophagus and relieve symptoms. Treatment measures include botulinum toxin injection, inflatable dilation, stent insertion, and surgical myotomy (open or laparoscopic). Surgical procedures are often subject to controversy owing to concerns about safety and effectiveness, particularly in older patients. Herein, we review clinical epidemiological and experimental data to determine the prevalence, pathogenesis, clinical presentation, diagnostic criteria, and treatment options for achalasia to support its clinical management.

19.
ACS Appl Mater Interfaces ; 15(39): 46408-46416, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37748106

RESUMEN

Radioactive iodine from nuclear waste poses a huge threat to public safety and raises concerns about environmental pollution. There is thus a growing demand for developing novel adsorbents for highly effective iodine capture. In this work, we design and synthesize three novel conjugated microporous polymers, namely, TPE-PyTTA-CMP, TPE-TAPP-CMP, and TPE-TPDA-CMP, which are constructed by an imidization reaction based on octet and tetratopic linkers. The iodine vapor adsorption experiments show that the three CMPs have an excellent iodine adsorption capacity as high as 3.10, 3.67, and 4.68 g·g-1 under 348 K and ambient pressure conditions, respectively. The adsorbed iodine in the CMPs can be released into methanol in a dramatically rapid manner, and their excellent iodine adsorption performance can still be maintained after multiple cycles. In addition, the CMPs demonstrate good adsorption performance in an n-hexane solution of iodine, and the kinetic experimental data follow the pseudo-second-order model. The hierarchical porosity, extended π-conjugated skeleton, and rich electron-donor nitrogen sites of the CMPs could contribute to their excellent iodine adsorption performance. The knowledge information obtained in this work could open up new possibilities for designing novel CMPs targeting a wide range of environment-related applications.

20.
Nat Commun ; 14(1): 1147, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854683

RESUMEN

Cobalt coordinated covalent organic frameworks have attracted increasing interest in the field of CO2 photoreduction to CO, owing to their high electron affinity and predesigned structures. However, achieving high conversion efficiency is challenging since most Co related coordination environments facilitate fast recombination of photogenerated electron-hole pairs. Here, we design two kinds of Co-COF catalysts with oxygen coordinated Co atoms and find that after tuning of coordination environment, the reported Co framework catalyst with Co-O4 sites exhibits a high CO production rate of 18000 µmol g-1 h-1 with selectivity as high as 95.7% under visible light irradiation. From in/ex-situ spectral characterizations and theoretical calculations, it is revealed that the predesigned Co-O4 sites significantly facilitate the carrier migration in framework matrixes and inhibit the recombination of photogenerated electron-hole pairs in the photocatalytic process. This work opens a way for the design of high-performance catalysts for CO2 photoreduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA