Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Cancer Biol ; 95: 13-24, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37355214

RESUMEN

Therapeutic antibodies are the largest class of biotherapeutics and have been successful in treating human diseases. However, the design and discovery of antibody drugs remains challenging and time-consuming. Recently, artificial intelligence technology has had an incredible impact on antibody design and discovery, resulting in significant advances in antibody discovery, optimization, and developability. This review summarizes major machine learning (ML) methods and their applications for computational predictors of antibody structure and antigen interface/interaction, as well as the evaluation of antibody developability. Additionally, this review addresses the current status of ML-based therapeutic antibodies under preclinical and clinical phases. While many challenges remain, ML may offer a new therapeutic option for the future direction of fully computational antibody design.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Humanos
2.
Small ; : e2401024, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597755

RESUMEN

Exposing different facets on metal-organic frameworks (MOFs) is highly desirable to enhance the performance for various applications, however, exploiting a concise and effective approach to achieve facet-controlled synthesis of MOFs remains challenging. Here, by modulating the ratio of metal precursors to ligands, the facet-engineered iron-based MOFs (Fe-MOFs) exhibits enhanced catalytic activity for Fenton reaction are explored, and the mechanism of facet-dependent performance is revealed in detail. Fully exposed (101) and (100) facets on spindle-shaped Fe-MOFs enable rapid oxidation of colorless o-phenylenediamine (OPD) to colored products, thereby establishing a dual-mode platform for the detection of hydrogen peroxide (H2O2) and triacetone triperoxide (TATP). Thus, a detection limit as low as 2.06 nm is achieved, and robust selectivity against a wide range of common substances (>16 types) is obtained, which is further improved by incorporating a deep learning architecture with an SE-VGG16 network model, enabling precise differentiation of oxidizing agents from captured images. The present strategy is expected will shine light on both the rational synthesis of nanomaterials with modulated morphologies and the exploitation of high-performance trace chemical sensors.

3.
Environ Geochem Health ; 46(1): 16, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38147141

RESUMEN

Soil organic matter can protect plants and microorganisms from toxic substances. Beyond the tolerance limit, the toxicity of petroleum pollution to soil organisms may increase rapidly with the increase of petroleum content. However, the method for evaluating the petroleum tolerance limit of soil organic matter (SOM) is still lacking. In this study, the petroleum saturation limit in SOM was first evaluated by the sorption coefficient (Kd) of 1,2-dichlorobenzene (DCB) from water to soils containing different petroleum levels. The sorption isotherm of dichlorobenzene in several petroleum-contaminated soils with different organic matter content and the microbial toxicity test of several petroleum-contaminated soils were determined. It is found that when the petroleum content is about 5% of the soil organic matter content, the sorption of petroleum to organic matter reached saturation limit. When organic matter reaches petroleum saturation limit, the sorption coefficient of DCB by soil particles increased linearly with the increase of petroleum content (R2 > 0.991). The results provided important insights into the understanding the fate of petroleum pollutants in soil and the analysis of soil toxicity.


Asunto(s)
Contaminantes Ambientales , Petróleo , Contaminación Ambiental , Suelo
4.
Neural Plast ; 2022: 6509981, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36510594

RESUMEN

Long-term hypoxia can induce oxidative stress and apoptosis in hippocampal neurons that can lead to brain injury diseases. Astragaloside IV (AS-IV) is widely used in the antiapoptotic therapy of brain injury diseases. However, its mechanism of action is still not fully understood. In this study, we investigated the effect of AS-IV on hypoxia-induced oxidative stress and apoptosis in hippocampal neurons and explored its possible mechanism. In vivo, mice were placed in a hypoxic circulatory device containing 10% O2 and gavaged with AS-IV (60 and 120 mg/kg/d) for 4 weeks. In vitro, mouse hippocampal neuronal cells (HT22) were treated with hypoxia (1% O2) for 24 hours in the presence or absence of AS-IV, MDL-28170 (calpain-1 inhibitor), or YC-1 (HIF-1α inhibitor). The protective effect of AS-IV on brain injury was further explored by examining calpain-1 knockout mice. The results showed that hypoxia induced damage to hippocampal neurons, impaired spatial learning and memory abilities, and increased oxidative stress and apoptosis. Treatment with AS-IV or calpain-1 knockout improved the damage to hippocampal neurons and spatial learning and memory, attenuated oxidative stress and inhibited cell apoptosis. These changes were verified in HT22 cells. Overexpression of calpain-1 abolished the improvement of AS-IV on apoptosis and oxidative stress. In addition, the effects of AS-IV were accompanied by decreased calpain-1 and HIF-1α expression, and YC-1 showed a similar effect as AS-IV on calpain-1 and caspase-3 expression. In conclusion, this study demonstrates that AS-IV can downregulate the calpain-1/HIF-1α/caspase-3 pathway and inhibit oxidative stress and apoptosis of hippocampal neurons induced by hypoxia, which provides new ideas for studying the antiapoptotic activity of AS-IV.


Asunto(s)
Lesiones Encefálicas , Calpaína , Animales , Ratones , Caspasa 3/metabolismo , Caspasa 3/farmacología , Calpaína/metabolismo , Transducción de Señal , Apoptosis , Hipoxia
5.
J Anim Physiol Anim Nutr (Berl) ; 106(6): 1268-1276, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34862676

RESUMEN

A total of 60 sows (Landrace × Yorkshire, average parity was 1.39) were used to evaluate the effects of soy isoflavones (ISO) supplementation on reproductive performance, serum antioxidant enzyme parameters, and milk compositions of sows, and the growth performance of offspring. Sows were randomly assigned to 4 groups based on the parity. There were 15 replicates per treatment. Dietary treatments were based on a corn-soybean meal-based basal diet and supplemented with 0, 10, 20, or 40 mg/kg ISO. With the increase of the ISO dosage, average daily feed intake of sows increased linearly; oestrus interval decreased linearly and quadratically. In addition, on day 10 of lactation, linear increases in serum superoxide dismutase levels, linear and quadratic increases in serum total antioxidant capacity, and linear decreases in serum malondialdehyde levels were observed in increasing ISO dosage in the diet of sows. The body weight on day 10 and 21 and the average daily gain during days 3-10 and 3-21 of offspring increased linearly at graduated doses of ISO increased. Therefore, feeding sows with graded levels of ISO containing diet during late-gestation and lactation periods improved the reproductive performance of sows and the growth performance of their offspring in a dose-dependent manner.


Asunto(s)
Antioxidantes , Isoflavonas , Porcinos , Embarazo , Animales , Femenino , Antioxidantes/farmacología , Alimentación Animal/análisis , Destete , Lactancia , Dieta/veterinaria , Suplementos Dietéticos , Isoflavonas/farmacología
6.
Dev Growth Differ ; 63(9): 501-515, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34611891

RESUMEN

The neural crest is a multipotent cell population that migrates extensively to play important roles during embryonic development. After acquiring motility, trunk neural crest cells delaminate from the spinal cord and migrate to various regions of the body. Several cellular adhesion molecules, such as vinculin, are involved in the regulation of neural crest delamination and migration. In the present study, we found that draxin could inhibit delamination and migration of neural crest cells from the chick spinal cord and abnormal aggregation of the migrating neural crest cells. In the presence of draxin, the resuspended neural crest regained its adhesive ability such that it was significantly increased. Overexpression of draxin caused increased vinculin expression in vivo. Our data indicate that draxin might control delamination and migration of chick trunk neural crest by increasing cell adhesion.


Asunto(s)
Pollos , Cresta Neural , Animales , Adhesión Celular , Movimiento Celular , Médula Espinal
7.
Int J Phytoremediation ; 21(13): 1296-1304, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31617392

RESUMEN

Uptake and in-plant transport of formaldehyde by six plants with or without soil microorganisms were investigated. The capabilities of fresh and boiled leaf extracts to dissipate added formaldehyde were also measured to evaluate formaldehyde metabolism in plant tissues. Results show that when the initial formaldehyde level in air was 0.56 ± 0.04 mg·m-3, the removal rate in the plant-only systems varied from 1.91 to 31.8 µg·h-1·g-1 FW (fresh weight). The removal rate of plants in the plant-only systems were ordered as Helianthus annuus Linn > Lycopersicon esculentum Miller > Oryza sativa > Sansevieria trifasciata Prain > Bryophyllum pinnatum > Mesembryanthemum cordifolium L. f. Most reduction of formaldehyde in the air was due to degradation by active components in the plant tissues, of which 4-64% of these were through to be enzymatic reactions. In the microbe-plant systems, formaldehyde removal rates increased by 0.24-9.53 fold compared to the plant-only systems, with approximately 19.6-90.5% of the formaldehyde reduction resulting from microbial degradation. Microorganisms added to the rhizosphere solution enhanced phytoremediation by increasing the downward transport of formaldehyde and its release by roots. Results suggest a new means to screen for efficient plant species that can be used for phytoremediation of indoor air.


Asunto(s)
Rizosfera , Contaminantes del Suelo , Biodegradación Ambiental , Formaldehído , Raíces de Plantas , Suelo
8.
Artículo en Inglés | MEDLINE | ID: mdl-30596331

RESUMEN

The roles of enzymatic reactions and redox reactions caused by reactive oxygen species (ROS) in formaldehyde metabolism in tomatoes and wheat seedlings and the changes in peroxidase (POD) and catalase (CAT) activities in plants were investigated. Differences in the breakdown of added formaldehyde between fresh and boiled plant extracts were determined to calculate the contributions of different removal mechanisms. Two plant seedlings efficiently removed formaldehyde from air when its level varied from 0.65 to 1.91 mg m-3; meanwhile, the maximum rate at which tomato seedlings transported formaldehyde from air to the rhizosphere solution reached 182.26 µg h-1 kg-1 FW (fresh weight). Metabolism in plants was mainly responsible for the formaldehyde dissipation. The enzymatic contribution to formaldehyde dissipation decreased with increasing shoot exposure time or air formaldehyde level, while the redox contribution increased in importance because of an increasing level of ROS. The different enzymatic antioxidant activities of plants resulted in different levels of ROS and hence different tolerance and removal efficiencies toward formaldehyde. The self-enhancing ability of plants to remove formaldehyde via redox reactions suggested that the formaldehyde removal efficiency could be enhanced by plant adaptation to environmental stress.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/prevención & control , Antioxidantes/metabolismo , Formaldehído/análisis , Especies Reactivas de Oxígeno/metabolismo , Plantones/enzimología , Catalasa/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/crecimiento & desarrollo , Oxidación-Reducción , Peroxidasas/metabolismo , Plantones/crecimiento & desarrollo , Estrés Fisiológico , Triticum/enzimología , Triticum/crecimiento & desarrollo
9.
Sensors (Basel) ; 18(5)2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29762494

RESUMEN

A simple and easy method was implemented for the contemporary detection of cadmium (Cd2+) and lead (Pb2+) ions using 1,3,6,8-pyrenetetrasulfonic acid sodium salt-functionalized carbon nanotubes nanocomposites (PyTS⁻CNTs). The morphology and composition of the obtained PyTS⁻CNTs were characterized using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS). The experimental results confirmed that the fabricated PyTS⁻CNTs exhibited good selectivity and sensitivity for metal ion-sensing owing to the insertion of sulfonic acid groups. For Cd2+ and Pb2+, some of the electrochemical sensing parameters were evaluated by varying data such as the PyTS⁻CNT quantity loaded on the pyrolytic graphite electrode (PGE), pH of the acetate buffer, deposition time, and deposition potential. These parameters were optimized with differential pulse anodic sweeping voltammetry (DPASV). Under the optimal condition, the stripping peak current of the PyTS⁻CNTs/Nafion/PGE varies linearly with the heavy metal ion concentration, ranging from 1.0 µg L-1 to 90 µg L-1 for Cd2+ and from 1.0 µg L-1 to 110 µg L-1 for Pb2+. The limits of detection were estimated to be approximately 0.8 µg L-1 for Cd2+ and 0.02 µg L-1 for Pb2+. The proposed PyTS⁻CNTs/Nafion/PGE can be used as a rapid, simple, and controllable electrochemical sensor for the determination of toxic Cd2+ and Pb2+.

10.
BMC Microbiol ; 16(1): 259, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27814685

RESUMEN

BACKGROUND: The chicken gut microbiota is an important and complicated ecosystem for the host. They play an important role in converting food into nutrient and energy. The coding capacity of microbiome vastly surpasses that of the host's genome, encoding biochemical pathways that the host has not developed. An optimal gut microbiota can increase agricultural productivity. This study aims to explore the composition and function of cecal microbiota in Dagu chicken under two feeding modes, free-range (outdoor, OD) and cage (indoor, ID) raising. RESULTS: Cecal samples were collected from 24 chickens across 4 groups (12-w OD, 12-w ID, 18-w OD, and 18-w ID). We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions to characterize the cecal microbiota of Dagu chicken and compare the difference of cecal microbiota between free-range and cage raising chickens. It was found that 34 special operational taxonomic units (OTUs) in OD groups and 4 special OTUs in ID groups. 24 phyla were shared by the 24 samples. Bacteroidetes was the most abundant phylum with the largest proportion, followed by Firmicutes and Proteobacteria. The OD groups showed a higher proportion of Bacteroidetes (>50 %) in cecum, but a lower Firmicutes/Bacteroidetes ratio in both 12-w old (0.42, 0.62) and 18-w old groups (0.37, 0.49) compared with the ID groups. Cecal microbiota in the OD groups have higher abundance of functions involved in amino acids and glycan metabolic pathway. CONCLUSION: The composition and function of cecal microbiota in Dagu chicken under two feeding modes, free-range and cage raising are different. The cage raising mode showed a lower proportion of Bacteroidetes in cecum, but a higher Firmicutes/Bacteroidetes ratio compared with free-range mode. Cecal microbiota in free-range mode have higher abundance of functions involved in amino acids and glycan metabolic pathway.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Ciego/microbiología , Pollos/microbiología , Ensayos Analíticos de Alto Rendimiento , Microbiota , Filogenia , Animales , Bacterias/aislamiento & purificación , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Secuencia de Bases , China , Clasificación , Buche de las Aves/microbiología , Heces , Conducta Alimentaria , Microbioma Gastrointestinal , Ensayos Analíticos de Alto Rendimiento/veterinaria , Consorcios Microbianos/genética , Microbiota/genética , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN/veterinaria
11.
Horm Behav ; 65(5): 505-15, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24717850

RESUMEN

The senescence-accelerated-prone mouse 8 (SAMP8) has been proposed as a suitable, naturally derived animal model for Alzheimer's disease (AD). In the current study, we focus on the problem whether SAMP8 mice show abnormal behavioral and neuropathological signs before they present the characteristic of AD. Our results demonstrated that given the presence of the senescent, behavioral and neuropathological characteristics, the "middle-aged" SAMP8 mice appear to be a suitable and naturally derived animal model for MCI basic research. There is relatively less evidence that androgen may be involved in the pathogenesis of AD. We determined testosterone (T) levels of SAMR1 and SAMP8 mice and found that the marked age-related decrease in serum androgen levels may be one of the risk factors for Alzheimer's dementia. We also evaluated the interventional effect on MCI phase by dihydrotestosterone (DHT) in male SAMP8 mice and found that timely and appropriate androgen intervention can postpone the onset and improve the symptoms of dementia.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Dihidrotestosterona/uso terapéutico , Envejecimiento/fisiología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Animales , Encéfalo/patología , Región CA1 Hipocampal/patología , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Progresión de la Enfermedad , Femenino , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Especificidad de la Especie , Testosterona/sangre
12.
J Hazard Mater ; 476: 135014, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38941839

RESUMEN

Pt(II) polypyridine complex-based probe exhibits promising performance in anion detection by the change of the absorption and emission properties based on supramolecular self-assembly. However, whether one can develop a modulation strategy of the counter anion to boost the detection sensitivity and anti-interference capability of the Pt(II) complex-based probe remains a big challenge. Here, an effective modulation strategy was proposed by precisely regulating the interaction energy through adjusting the type of the counter anions, and a series of probes have been synthesized by counter anion (X = Cl-, ClO4-, PF6-) exchange in [Pt(tpy)Cl]·X (tpy=2,2':6',2''-terpyridine), and thus the colorimetric-luminescence dual-mode detection toward nitrate was achieved. The optimal [Pt(tpy)Cl]·Cl probe shows superior nitrate detection performance including a limit of detection (LOD) (8.68 nM), rapid response (<0.5 s), an excellent selectivity and anti-interference capability even facing 14 common anions. Moreover, a polyvinyl alcohol (PVA) sponge-based sensing chip loaded with the probe enables the ultra-sensitive detection of nitrate particles with an ultralow detection limit of 7.6 pg, and it was further integrated into a detection pen for the accurate recognition of nitrate particles in real scenarios. The proposed counter-anion modulation strategy is expected to start a new frontier for the exploration of novel Pt(II) complex-based probes.

13.
J Hazard Mater ; 471: 134322, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38636238

RESUMEN

This study focused on the effects of urea humate-based porous materials (UHPM) on soil aggregates, plant physiological characteristics, and microbial diversity to explore the effects of UHPM on the phytoremediation of petroleum-contaminated soil. The compositions of soil aggregates, ryegrass (Lolium perenne) biomass, plant petroleum enrichment capacity, and bacterial communities in soils with and without UHPM were investigated. The results showed that UHPM significantly increased soil aggregate content by 0.25 mm-5 mm, resulting in higher fertilizer holding capacity, erosion resistance capacity, and plant biomass and microbial number than the soil without UHPM mixed. In addition, UHPM decreased the absorption of petroleum by plants in the soil while increasing the abundance of degrading bacteria and petroleum-degrading-related genes in the soil, thereby promoting the removal of hard-to-degrade petroleum components. RDA showed that, compared with the unimproved soil, each soil indicator was positively correlated with a high abundance of degrading bacteria in the improved soil and was significant. UHPM can be regarded as a petroleum-contaminated soil remediation agent that combines slow nutrient release with soil improvement effects.


Asunto(s)
Bacterias , Biodegradación Ambiental , Lolium , Petróleo , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Petróleo/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Lolium/metabolismo , Urea/metabolismo , Porosidad , Biomasa , Suelo/química
14.
J Ginseng Res ; 48(4): 405-416, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036731

RESUMEN

Background: Hypoxic pulmonary hypertension (HPH) is the main pathological change in vascular remodeling, a complex cardiopulmonary disease caused by hypoxia. Some research results have shown that ginsenoside Rg1 (Rg1) can improve vascular remodeling, but the effect and mechanism of Rg1 on hypoxia-induced pulmonary hypertension are not clear. The purpose of this study was to discuss the potential mechanism of action of Rg1 on HPH. Methods: C57BL/6 mice, calpain-1 knockout mice and Pulmonary artery smooth muscle cells (PASMCs) were exposed to a low oxygen environment with or without different treatments. The effect of Rg1 and calpain-1 silencing on inflammation, fibrosis, proliferation and the protein expression levels of calpain-1, STAT3 and p-STAT3 were determined at the animal and cellular levels. Results: At the mouse and cellular levels, hypoxia promotes inflammation, fibrosis, and cell proliferation, and the expression of calpain-1 and p-STAT3 is also increased. Ginsenoside Rg1 administration and calpain-1 knockdown, MDL-28170, and HY-13818 treatment showed protective effects on hypoxia-induced inflammation, fibrosis, and cell proliferation, which may be associated with the downregulation of calpain-1 and p-STAT3 expression in mice and cells. In addition, overexpression of calpain 1 increased p-STAT3 expression, accelerating the onset of inflammation, fibrosis and cell proliferation in hypoxic PASMCs. Conclusion: Ginsenoside Rg1 may ameliorate hypoxia-induced pulmonary vascular remodeling by suppressing the calpain-1/STAT3 signaling pathway.

15.
Front Physiol ; 14: 1184651, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284544

RESUMEN

Introduction: Methionine (Met) is an important amino acid related to the development of skeletal muscle. This study investigated the effects of dietary Met restriction on the gene expression of M. iliotibialis lateralis. Methods: A total of 84 day-old broiler chicks (Zhuanghe Dagu) with a similar initial body weight (207.62 ± 8.54 g) were used in this study. All birds were divided into two groups (CON; L-Met) based on the initial body weight. Each group consisted of six replicates with seven birds per replicate. The experimental period was 63 days (phase 1, days 1-21; phase 2, days 22-63). According to the nutritional requirements of Zhuanghe Dagu chickens, we provided a basal diet (0.39% Met levels during phase 1 and 0.35% Met levels during phase 2, as-fed basis) to the birds in the CON group, while we provided a Met-restricted diet (0.31% Met levels during phase 1 and 0.28% Met levels during phase 2, as-fed basis) to the birds in the L-Met group. The growth performance of broiler chicks and their M. iliotibialis lateralis development parameters were measured on days 21 and 63. Results and Discussion: In this study, dietary Met restriction did not affect the growth performance of broiler chicks but hindered the development of M. iliotibialis lateralis at both sampling timepoints. On the final day, three birds selected from each group (three from CON and three from L-Met) were used to obtain M. iliotibialis lateralis samples from leg muscle for further transcriptome analysis. Transcriptome analysis revealed that dietary Met restriction significantly upregulated 247 differentially expressed genes (DEGs) and downregulated 173 DEGs. Additionally, DEGs were mainly enriched in 10 pathways. Among DEGs, we observed that dietary Met restriction downregulated the expression of CSRP3, KY, FHL1, LMCD1, and MYOZ2 in M. iliotibialis lateralis. Therefore, we considered that dietary Met restriction had negative effects on the development of M. iliotibialis lateralis, and CSRP3, KY, FHL1, LMCD1, and MYOZ2 may serve as potential functional genes involved in this process.

16.
Sci Total Environ ; 891: 164463, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245811

RESUMEN

It is essential to improve the efficiency and economic benefits of phytoremediation. In this study, drip irrigation and intercropping were used to enhance the phytoremediation of arsenic-contaminated soil. Meanwhile, the influence of soil organic matter (SOM) on phytoremediation was investigated by comparing the difference in arsenic migration in soils with or without peat addition as well as the arsenic accumulation of plants. The results showed that hemispherical wetted bodies with a radius of approximately 6.5 cm were formed in the soil after drip irrigation. Arsenic in the center of the wetted bodies migrated to the edge of the wetted bodies. Peat inhibited the upward migration of arsenic from the deep subsoil and increased the phytoavailability of arsenic under drip irrigation conditions. To soils without peat added, drip irrigation decreased the arsenic accumulation in crops (planted at the center of the wetted body) while increased the arsenic accumulation in remediation plants (planted at the edge of the wetted body) compared with the flood irrigation treatment. An increase in soil organic matter of about 36 % was found after mixing 2 % peat in the soil, and correspondingly, arsenic concentrations in remediation plants increased by >28 % in both intercropping treatments with a drip or flood irrigation. Drip irrigation coupled with intercropping enhanced the effect of phytoremediation, and the addition of soil organic matter further improved phytoremediation efficiency.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Suelo , Biodegradación Ambiental , Agricultura , Contaminantes del Suelo/análisis
17.
Environ Sci Pollut Res Int ; 30(20): 58282-58294, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36977874

RESUMEN

Phytoremediation is considered an effective method for indoor air pollution control. The removal rate and mechanism of benzene in air by two plants, Tradescantia zebrina Bosse and Epipremnum aureum (Linden ex André) G. S. Bunting, were investigated through fumigation experiments under the condition of plant hydroponics culturing. Results showed that the plant removal rates increased with increase in benzene concentration in air. When the benzene concentration in air was set at 432.25-1314.75 mg·m-3, the removal rates of T. zebrina and E. aureum ranged from 23.05 ± 3.07 to 57.42 ± 8.28 mg·kg-1·h-1 FW and from 18.82 ± 3.73 to 101.58 ± 21.20 mg·kg-1·h-1 FW, respectively. The removal capacity was positively related to the transpiration rate of plants, indicating that gas exchange rate could be a key factor for the evaluation of removal capacity. There existed fast reversible transport of benzene on air-shoot interface and root-solution interface. After shoot exposure to benzene for 1 h, downward transport was the dominant mechanism in the removal of benzene in air by T. zebrina, while in vivo fixation was the dominant mechanism at exposure time of 3 and 8 h. Within 1-8 h of shoot exposure time, in vivo fixation capacity was always the key factor affecting the removal rate of benzene in the air by E. aureum. Contribution ratio of in vivo fixation in the total benzene removal rate increased from 6.29 to 92.29% for T. zebrina and from 73.22 to 98.42% for E. aureum in the experimental conditions. Reactive oxygen species (ROS) burst induced by benzene exposure was responsible for the contribution ratio change of different mechanisms in the total removal rate, which also was verified by the change of activities of antioxidant enzymes (CAT, POD, and SOD). Transpiration rate and antioxidant enzyme activity could be considered parameters to evaluate the plant removal ability to benzene and to screen plants for establishment of plant-microbe combination technology.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Araceae , Tradescantia , Benceno , Antioxidantes , Tilia , Plantas
18.
RSC Adv ; 13(36): 24878-24886, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37614796

RESUMEN

A new simple Pt(ii) terpyridyl salt that shows reversible response towards acetonitrile and irreversible response towards methanol has been reported, accompanied with the colorimetric/luminescent changing from red to yellow. Experimentally and theoretically, the spectroscopic change derives from the hydrogen bonds between crystal water in the Pt(ii) terpyridyl salt and external organic molecules, and the different strength of hydrogen bond leads either reversible or irreversible stimuli-response. Furthermore, this Pt(ii) terpyridyl salt has been on one hand applied as a probe for sensing acetonitrile in water solution, with high selectivity, good reversibility, proper sensitivity and fast response rate, and on the other hand as advanced anticounterfeiting materials. The current study provides a new approach to acquire and design either reversible or irreversible stimuli-responsive luminescent materials.

19.
Poult Sci ; 102(1): 102310, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36442307

RESUMEN

The transcription factor csal1 is an important molecule that plays a critical regulatory function in ovarian follicle development, as confirmed by our previous data. However, the candidate genes of csal1 and its regulatory mechanism remain poorly understood in the granulosa cells (GCs) of chicken prehierarchical follicles (PFs). Six transcriptomes of csal1 and empty vector were analyzed in Chinese Dagu hens by RNA sequencing. Six cDNA libraries were constructed, with more than 42 million clean reads and 16,779 unigenes. Of these 16,779 unigenes, 2,762 differentially expressed genes (DEGs) were found in GCs, including 1,605 upregulated and 1,157 downregulated unigenes. Fourteen genes, including BMP5, TACR2, AMH, PLAG1, MYOD1, BOP1, SIPA1, NOTCH1, BCL2L1, SOX9, ADGRA2, WNT5A, SLC7A11, and GATAD2B, were related to GC proliferation and differentiation, hormone production, ovarian follicular development, regulation of reproductive processes, and signaling pathways in the PFs. Further analysis demonstrated the DEGs in GCs of ovarian follicles were enriched in neuroactive ligand-receptor interaction, cell adhesion molecules, and pathways related to cytochrome P450, indicating a critical function for csal1 in the generation of egg-laying features by controlling ovarian follicle development. For the first time, the current study represents the transcriptome analysis with ectopic csal1 expression. These findings provide significant evidence for investigating the molecular mechanism by which csal1 controls PF development in the hen ovary.


Asunto(s)
Pollos , Animales , Femenino , Pollos/genética , Células de la Granulosa , Folículo Ovárico/fisiología , RNA-Seq/veterinaria , Factores de Transcripción/metabolismo
20.
Environ Sci Pollut Res Int ; 30(33): 81303-81313, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37316625

RESUMEN

Intercropping improves the phytoremediation of soil trace metal contamination. Dripping irrigation could further promote the phytoremediation of trace metals by influencing their speciation and total amount in soil. However, there is currently insufficient information elucidating this synergistic effect. In this study, the combined effect of drip irrigation and intercropping on the phytoremediation of Cu-contaminated soil was testified by investigating the changes of Cu spatial distribution and speciation in soil irrigated by dripping or sprinkling methods, as well as Cu bioconcentration factor and translocation factor by plants. Results showed that after a 30-day drip irrigation, the Cu level in soils near the drip outlet decreased by 4.7% and that in Triticum aestivum L. (T. aestivum) roots intercropped with Helianthus annuus L. (H. annuus) and Zea mays L. (Z. mays) dropped by 53.2% and 25.1%, respectively, relative to sprinkler irrigation. Meanwhile, the total Cu and exchangeable Cu levels in soils 6 cm away from the drip outlet increased by 10.8% and 20.4% after 30 days of drip irrigation, leading to 41.1% and 40.0% increases of Cu content in remediation plants H. annuus and Z. mays seedlings as compared to the values by sprinkler irrigation. Therefore, the drip irrigation enhanced the effect of intercropping on Cu phytoremediation.


Asunto(s)
Contaminantes del Suelo , Oligoelementos , Cobre/análisis , Biodegradación Ambiental , Suelo , Oligoelementos/farmacología , Zea mays , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA