Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Materials (Basel) ; 16(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38138753

RESUMEN

In this study, the efficiency of mechanically alloyed Fe80Si10B10 in degrading basic red 46 azo dye is investigated. Moreover, the influences of different parameters, such as pH and time, on the elimination of the aromatic derivatives obtained as by-products of the fracture of the azo group are also analyzed. After beginning the reduction to the normal conditions of pH (4.6) and temperature, the experimental findings showed a discoloration of 97.87% after 20 min. The structure and morphology of the nanocrystalline Fe80Si10B10 powder were characterized by SEM and XRD before and after use in the degradation process. The XRD patterns of the Fe-Si-B powder after redox reaction suggest that the valent zero Fe of the alloy is the reducing agent. Powdered cork was then used as a biosorbent for the removal of the by-products generated, resulting in increasing removal percentages from pH 7 (26%) to pH 9 (62%) and a contact time of 120 min. The FTIR spectrum of the cork after adsorption shows a shift of the bands, confirming the interaction with the aromatic amines. The present findings show that metallic powders and natural cork perform well together in removing azo dye solutions and their degradation products.

2.
Materials (Basel) ; 16(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38005172

RESUMEN

Soft magnetic Fe65Ni28Mn7 (at. %) alloy was successfully synthesized by mechanical alloying and spark plasma sintering (SPS) and, in parallel, the same composition was prepared by arc melting (AM) for comparison. Several SPS conditions were tested. X-ray diffraction and scanning electron microscopy were used to investigate the structure, phase composition, and morphology of the samples. It was found that mechanical alloying produced BCC and FCC supersaturated solid solution after 130 h of milling, with a fine microstructure (i.e., crystallite size of 10 nm). Spark plasma sintering performed at 750 °C and 1000 °C under two pressures of 50 MPa and 75 MPa revealed stable FCC phases. A single FCC phase was observed after the arc melting synthesis. The magnetic properties of milled powders and solids obtained by AM and SPS were investigated. The specimen consolidated by SPS at 1000 °C under the pressure of 50 MPa exhibits soft magnetic behavior (coercivity 0.07 Oe), whereas the mechanically alloyed sample revealed hard magnetic behavior. The specimen consolidated at 750 °C under a pressure of 75 MPa showed a higher compressive strength of 1700 MPa and a Vickers hardness of 425 ± 18 HV. As a result, sintering at 750 °C/75 MPa can be utilized to enhance the mechanical properties, while those sintered at 1000 °C/50 MPa increase magnetic softness.

3.
Materials (Basel) ; 17(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38204087

RESUMEN

A high-entropy Fe30Co20Ni20Mn20Al10 (at%) alloy with a face-centered cubic (FCC) crystalline phase was produced through mechanical alloying. This study examined the development of its phases, microstructure, morphology, and magnetic characteristics. Scanning electron microscopy (SEM) was applied to assess the sample morphology in relation to milling times. The changes that the material underwent during milling were investigated using X-ray diffraction. The milling time affected the phase transformation. A single FCC solid solution (crystallite size = 12 nm) was found after 50 h of milling. Additionally, the magnetic characteristics were examined and shown to be associated with microstructural changes. The powder mixture exhibited behavior consistent with soft magnetics, with an Hc value of 8 Am-1 and an Ms value of 165 emu/g. The excellent soft magnetic characteristic may be related to the stability of the FCC phase, which was generated following a 30 h milling process. In addition, the low value of Ms may have originated from the presence of Al atoms in the solid solution and the development of large densities of interfaces and crystal defects.

4.
J Nanosci Nanotechnol ; 12(9): 7442-5, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23035491

RESUMEN

In this work we report on microstructural and magnetic characterization of Co50Mn30In20 alloy melt-spun ribbons in its as-cast state and after being annealed at 923 K during 5 h. Microstructure was analysed by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques, while magnetic measurements (hysteresis loop and magnetization) were performed in the temperature range 1.8-1000 K. XRD measurements confirm the presence of Heusler phase Co2MnIn in the annealed material with crystallites sizing around 35 nm. Ferromagnetic ordering temperatures in Co-based Heusler systems (Co2MnIn) are considerably higher than in the corresponding Ni2MnIn ones. In this case, T(c) = 520 K for the annealed sample is lower than the corresponding one (T(c) = 550 K) for the as-cast ribbon. At around 840 K, the very abrupt magnetization change for the annealed sample is higher than the one obtained for the as-cast ribbon. This temperature value is the same than the recrystallization phase transition temperature detected in the DSC measurement.

5.
Materials (Basel) ; 15(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36234314

RESUMEN

Mechanical alloying (MA) and mechanical milling (MM) are based on the ball milling technique/procedure [...].

6.
Materials (Basel) ; 16(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36614494

RESUMEN

High-energy ball milling was used to produce two Fe-X-B (X = Nb, NiZr) nanocrystalline alloys. X-ray diffraction (XRD), differential scanning calorimetry (DSC), and vibrating sample magnetometry (VSM) were used to analyze the microstructure, thermal, and magnetic characteristics of the milled powders, the agglomerated particles (also generated during the milling process), and the compacted specimens of both alloys. The main crystallographic phase is always a bcc Fe-rich solid solution; whereas a minor Nb(B) phase is detected on powders and agglomerated particles in the Fe80Nb8B12 alloy. The crystalline size of the Fe80(NiZr)8B12 alloy is between 11 and 14 nm, whereas in the Fe80Nb8B12 alloy, it ranges between 8 and 12 nm. Microstrain and dislocation density are higher in agglomerated samples for both alloys than in milled powders. Thermal analysis detects structural relaxation and crystal growth exothermic processes with high dispersion in the temperature intervals and in the calculated apparent activation energy of the main crystallization process. Regarding magnetic behavior, the coercivity values of all powdered-agglomerated specimens were around 800 A/m. The coercivity is higher in compacted sample, but controlled annealing favors enhanced soft behavior.

7.
Materials (Basel) ; 15(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36143795

RESUMEN

In the present work, the effect of Si addition on the magnetic properties of Fe60-xCo25Ni15Six (x = 0, 5, 10, 20, and 30 at%) alloys prepared by mechanical alloying was analyzed by X-ray diffraction and magnetic vibrating sample magnetometry and SQUID. The crystallographic parameters of the bcc-solid solutions were calculated by Rietveld refinement of the X-ray diffraction patterns with Maud software. Scanning electron microscopy (SEM) was used to determine the morphology of the powdered alloys as a function of milling time. It was found that the Si addition has an important role in the increase of structural hardening and brittleness of the particles (favoring the more pronounced refinement of crystallites). The resulting nanostructure is highlighted in accordance with the concept of the structure of defects. Magnetic properties were related to the metalloid addition, formed phases, and chemical compositions. All processed samples showed a soft ferromagnetic behavior (Hc ≤ 100 Oe). The inhomogeneous evolution of the magnetization saturation as a function of milling time is explained by the magnetostriction effective anisotropy and stress induced during mechanical alloying.

8.
Materials (Basel) ; 15(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500069

RESUMEN

The removal of dyes from textile effluents utilizing advanced wastewater treatment methods with high efficiency and low cost has received substantial attention due to the rise in pollutants in water. The purpose of this work is to give a comprehensive analysis of the different treatments for removing chemical dyes from textile effluents. The capability and potential of conventional treatments for the degradation of dyeing compounds in aqueous media, as well as the influence of multiple parameters, such as the pH solution, initial dye concentration, and adsorbent dose, are presented in this study. This study is an overview of the scientific research literature on this topic, including nanoreductive and nanophotocatalyst processes, as well as nanoadsorbents and nanomembranes. For the purpose of treating sewage, the special properties of nanoparticles are currently being carefully researched. The ability of nanomaterials to remove organic matter, fungus, and viruses from wastewater is another benefit. Nanomaterials are employed in advanced oxidation techniques to clean wastewater. Additionally, because of their small dimensions, nanoparticles have a wide effective area of contact. Due to this, nanoparticles' adsorption and reactivity are powerful. The improvement of nanomaterial technology will be beneficial for the treatment of wastewater. This report also offers a thorough review of the distinctive properties of nanomaterials used in wastewater treatment, as well as their appropriate application and future possibilities. Since only a few types of nanomaterials have been produced, it is also important to focus on their technological feasibility in addition to their economic feasibility. According to this study, nanoparticles (NPs) have a significant adsorption area, efficient chemical reactions, and electrical conductivity that help treat wastewater effectively.

9.
Materials (Basel) ; 14(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34443065

RESUMEN

Two nanocrystalline ferromagnetic alloys of the Fe-Co-Nb-B system have been produced by mechanical alloying (MA). Their microstructure, thermal behavior and magnetic response were checked by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and vibrating sample magnetometry (VSM). After 80 h of MA, the alloys were nanostructured (bcc-Fe(Co)-rich phase). As the Co content increases, the density of the dislocations decreases. Besides, a higher concentration of Co causes an increase in the activation energy of the crystallization process. The calculated energies, 267 and 332 kJ/mol, are associated to the crystalline growth of the bcc-Fe-rich phase. The Co content of the samples has no effect on the value of the saturation magnetization, whereas the coercivity is lower in the alloy containing less Co. Samples were compacted and heat-treated. Optimal annealing reduces the coercivity by a factor of two. Results were compared with the data of Fe-Nb-B and Fe-Ni-Nb-B alloys.

10.
Materials (Basel) ; 14(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34832253

RESUMEN

Heusler Ni-Mn-Sn-based alloys are good candidates for magnetic refrigeration. This application is based on cycling processes. In this work, thermal cycles (100) have been performed in three ribbons produced by melt-spinning to check the thermal stability and the magnetic response. After cycling, the temperatures were slowly shifted and the thermodynamic properties were reduced, the entropy changed at about 3-5%. Likewise, the thermomagnetic response remains similar. Thus, these candidates maintain enough thermal stability and magnetic response after cycling. Likewise, Cu addition shifts the structural transformation to higher temperatures, whereas the Curie temperature is always near 310 K. Regarding magnetic shape memory applications, the best candidate is the Ni49Mn36 Sn14Cu1 alloy.

11.
Materials (Basel) ; 13(20)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050307

RESUMEN

Microstructure as well as magnetic, thermal and magnetocaloric properties of the mechanically alloyed Fe72Nb8B20 powders have been investigated by means of Mössbauer spectrometry, differential scanning calorimetry (DSC), and magnetic measurements. The Mössbauer spectrometry results showed the formation of nanostructured Fe(B) and Fe(Nb) solid solutions, Fe2B boride, and an amorphous phase. The endothermic and exothermic peaks that are observed in the DSC curves might be related to the Curie temperature, and the crystallization of the amorphous phase, respectively. The critical exponent values around the magnetic phase transition of the amorphous phase (TC = 480 K), are deduced from the modified Arrott plots, Kouvel-Fisher curves and critical isotherm examination. The calculated values (ß = 0.457 ± 0.012, γ = 0.863 ± 0.136 and δ = 3.090 ± 0.004) are near to those of the mean field model, revealing a dominating role of magnetic order arising due to long-range ferromagnetic interactions, as the critical exponents are mean-field-like. The maximum entropy change and the refrigerant capacity values are 1.45 J/kg·K and 239 J/kg, respectively, under a magnetic field of 5 T.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA