Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 17(1): 79-89, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29115293

RESUMEN

Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.


Asunto(s)
Hidrogeles/metabolismo , Polímeros/metabolismo , ARN/metabolismo , Animales , Materiales Biocompatibles , Células COS , Chlorocebus aethiops
2.
Adv Healthc Mater ; 13(2): e2301124, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37820720

RESUMEN

A nanopatterned interdigitated electrode array (nanoIEA)-based impedance assay is developed for quantitative real-time measurement of aligned endothelial cell (EC) barrier functions in vitro. A bioinspired poly(3,4-dihydroxy-L-phenylalanine) (poly (l-DOPA)) coating is applied to improve the human brain EC adhesion onto the Nafion nanopatterned surfaces. It is found that a poly (l-DOPA)-coated Nafion grooved nanopattern makes the human brain ECs orient along the nanopattern direction. Aligned human brain ECs on Nafion nanopatterns exhibit increased expression of genes encoding tight and adherens junction proteins. Aligned human brain ECs also have enhanced impedance and resistance versus unaligned ones. Treatment with a glycogen synthase kinase-3 inhibitor (GSK3i) further increases impedance and resistance, suggesting synergistic effects occur on the cell-cell tightness of in vitro human brain ECs via a combination of anisotropic matrix nanotopography and GSK3i treatment. It is found that this enhanced cell-cell tightness of the combined approach is accompanied by increased expression of claudin protein. These data demonstrate that the proposed nanoIEA assay integrated with poly (l-DOPA)-coated Nafion nanopatterns and interdigitated electrode arrays can make not only biomimetic aligned ECs, but also enable real-time measurement of the enhanced barrier functions of aligned ECs via tighter cell-cell junctions.


Asunto(s)
Células Endoteliales , Polímeros de Fluorocarbono , Levodopa , Humanos , Impedancia Eléctrica , Levodopa/metabolismo , Levodopa/farmacología , Endotelio
3.
Cell Death Dis ; 15(6): 420, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886383

RESUMEN

The regeneration of the mammalian skeleton's craniofacial bones necessitates the action of intrinsic and extrinsic inductive factors from multiple cell types, which function hierarchically and temporally to control the differentiation of osteogenic progenitors. Single-cell transcriptomics of developing mouse calvarial suture recently identified a suture mesenchymal progenitor population with previously unappreciated tendon- or ligament-associated gene expression profile. Here, we developed a Mohawk homeobox (MkxCG; R26RtdT) reporter mouse and demonstrated that this reporter identifies an adult calvarial suture resident cell population that gives rise to calvarial osteoblasts and osteocytes during homeostatic conditions. Single-cell RNA sequencing (scRNA-Seq) data reveal that Mkx+ suture cells display a progenitor-like phenotype with expression of teno-ligamentous genes. Bone injury with Mkx+ cell ablation showed delayed bone healing. Remarkably, Mkx gene played a critical role as an osteo-inhibitory factor in calvarial suture cells, as knockdown or knockout resulted in increased osteogenic differentiation. Localized deletion of Mkx in vivo also resulted in robustly increased calvarial defect repair. We further showed that mechanical stretch dynamically regulates Mkx expression, in turn regulating calvarial cell osteogenesis. Together, we define Mkx+ cells within the suture mesenchyme as a progenitor population for adult craniofacial bone repair, and Mkx acts as a mechanoresponsive gene to prevent osteogenic differentiation within the stem cell niche.


Asunto(s)
Diferenciación Celular , Proteínas de Homeodominio , Osteogénesis , Cráneo , Animales , Ratones , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Osteogénesis/genética , Cráneo/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citología , Suturas Craneales/metabolismo , Células Madre/metabolismo , Células Madre/citología , Biomarcadores/metabolismo
4.
Biomaterials ; 298: 122128, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37121102

RESUMEN

Multicellular clustering provides cancer cells with survival advantages and facilitates metastasis. At the tumor migration front, cancer cell clusters are surrounded by an aligned stromal topography. It remains unknown whether aligned stromal topography regulates the resistance of migrating cancer cell clusters to therapeutics. Using a hybrid nanopatterned model to characterize breast cancer cell clusters at the migration front with aligned stromal topography, we demonstrate that topography-induced migrating cancer cell clusters exhibit upregulated cytochrome P450 family 1 (CYP1) drug metabolism and downregulated glycolysis gene signatures, which correlates with unfavorable prognosis. Screening on approved oncology drugs shows that cancer cell clusters on aligned stromal topography are more resistant to diverse chemotherapeutics. Full-dose drug testings further indicate that topography induces drug resistance of hormone receptor-positive breast cancer cell clusters to doxorubicin and tamoxifen and triple-negative breast cancer cell clusters to doxorubicin by activating the aryl hydrocarbon receptor (AhR)/CYP1 pathways. Inhibiting the AhR/CYP1 pathway restores reactive oxygen species-mediated drug sensitivity to migrating cancer cell clusters, suggesting a plausible therapeutic direction for preventing metastatic recurrence.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Línea Celular Tumoral
5.
Biomater Sci ; 8(7): 1951-1960, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32057054

RESUMEN

Fibrosis is a pathological accumulation of excessive collagen that underlies many of the most common diseases, representing dysfunction of the essential processes of normal tissue healing. Fibrosis research aims to limit this response without ameliorating the essential role of fibrogenesis in organ function. However, the absence of a realistic in vitro model has hindered investigation into mechanisms and potential interventions because the standard 2D monolayer culture of fibroblasts has limited applicability. We sought to develop and optimize fibrosis spheroids: a scaffold-free three-dimensional human fibroblast-macrophage spheroid system representing an improved benchtop model of human fibrosis. We created, characterized and optimized human fibroblast-only spheroids, demonstrating increased collagen deposition compared to monolayer fibroblasts, while spheroids larger than 300 µm suffered from progressively increasing apoptosis. Next, we improved the spheroid system with the addition of human macrophages to more precisely recapitulate the environment during fibrogenesis, creating a hybrid spheroid system with different ratios of fibroblasts and macrophages ranging from 2 : 1 to 64 : 1. We found that in the hybrid spheroids (particularly the 16 : 1 [F16] ratio) more fibroblasts were activated, with greater macrophage polarization towards a pro-inflammatory M1 phenotype. Hybrid spheroids containing higher ratios of macrophages showed greater macrophage heterogeneity and less fibrogenesis, while low macrophage ratios limited macrophage-induced effects and yielded less collagen deposition. The F16 group also had the highest expression levels of fibrosis-related genes (Col-1a1, Col-3a1 and TGF-ß) and inflammation-related genes (TNF, IL1ß and IL6). IF staining demonstrated that F16 spheroids had the highest levels of αSMA, collagen-1 and collagen-3 deposition among all groups as well as formation of a dense collagen rim surrounding the spheroid. Future studies exploring the greater fibrotic activity of F16 spheroids may provide new mechanistic insights into diseases involving excessive fibrotic activity. Microtissue fibrosis models capable of achieving greater clinical fidelity have the potential to combine the relevance of animal models with the scale, cost and throughput of in vitro testing.


Asunto(s)
Colágeno/metabolismo , Fibroblastos/citología , Macrófagos/citología , Esferoides Celulares/patología , Diferenciación Celular , Polaridad Celular , Supervivencia Celular , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/metabolismo , Fibrosis , Humanos , Macrófagos/metabolismo , Modelos Biológicos , Monocitos/citología , Monocitos/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
6.
Sci Rep ; 9(1): 16368, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31704952

RESUMEN

Reconstruction for total penile defects presents unique challenges due to its anatomical and functional complexity. Standard methods suffer from high complication rates and poor functional outcomes. In this work we have developed the first protocol for decellularizing whole-organ human penile specimens for total penile tissue engineering. The use of a hybrid decellularization scheme combining micro-arterial perfusion, urethral catheter perfusion and external diffusion enabled the creation of a full-size scaffold with removal of immunogenic components. Decellularization was complete as assessed by H&E and immunohistochemistry, while quantification of residual DNA showed acceptably low levels (<50 ng/mg). An intact ECM was maintained with histologic architecture preservation on H&E and SEM as well as preservation of key proteins such as collagen-1, laminin and fibronectin and retention of growth factors VEGF (45%), EGF (57%) and TGF-beta1 (42%) on ELISA. Post-decellularization patency of the cavernosal arteries for future use in reseeding was demonstrated. Scaffold biocompatibility was evaluated using human adipose-derived stromal vascular cells. Live/Dead stains showed the scaffold successfully supported cell survival and expansion. Influence on cellular behavior was seen with significantly higher expression of VWF, COL1, SM22 and Desmin as compared to cell monolayer. Preliminary evidence for regional tropism was also seen, with formation of microtubules and increased endothelial marker expression in the cavernosa. This report of successful decellularization of the complete human phallus is an initial step towards developing a tissue engineered human penile scaffold with potential for more successfully restoring cosmetic, urinary and sexual function after complete penile loss.


Asunto(s)
Prótesis de Pene , Pene/cirugía , Ingeniería de Tejidos/métodos , Andamios del Tejido , Materiales Biocompatibles , Separación Celular , Angiografía por Tomografía Computarizada , Matriz Extracelular/metabolismo , Humanos , Técnicas In Vitro , Masculino , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Microscopía Electrónica de Rastreo , Pene/anatomía & histología , Pene/fisiología , Perfusión , Procedimientos de Cirugía Plástica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA