Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Transplant ; 24(7): 1161-1171, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692412

RESUMEN

In this proof-of-concept study, spatial transcriptomics combined with public single-cell ribonucleic acid-sequencing data were used to explore the potential of this technology to study kidney allograft rejection. We aimed to map gene expression patterns within diverse pathologic states by examining biopsies classified across nonrejection, T cell-mediated acute rejection, interstitial fibrosis, and tubular atrophy. Our results revealed distinct immune cell signatures, including those of T and B lymphocytes, monocytes, mast cells, and plasma cells, and their spatial organization within the renal interstitium. We also mapped chemokine receptors and ligands to study immune cell migration and recruitment. Finally, our analysis demonstrated differential spatial enrichment of transcription signatures associated with kidney allograft rejection across various biopsy regions. Interstitium regions displayed higher enrichment scores for rejection-associated gene expression patterns than tubular areas, which had negative scores. This implies that these signatures are primarily driven by processes unfolding in the renal interstitium. Overall, this study highlights the value of spatial transcriptomics for revealing cellular heterogeneity and immune signatures in renal transplant biopsies and demonstrates its potential for studying the molecular and cellular mechanisms associated with rejection. However, certain limitations must be borne in mind regarding the development and future applications of this technology.


Asunto(s)
Rechazo de Injerto , Trasplante de Riñón , Prueba de Estudio Conceptual , Transcriptoma , Rechazo de Injerto/patología , Rechazo de Injerto/genética , Rechazo de Injerto/etiología , Trasplante de Riñón/efectos adversos , Humanos , Perfilación de la Expresión Génica , Pronóstico , Supervivencia de Injerto/inmunología , Biomarcadores/metabolismo , Aloinjertos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38794880

RESUMEN

BACKGROUND: Short-chain fatty acids (SCFAs), mainly acetate, propionate and butyrate, are produced by gut microbiota through fermentation of complex carbohydrates that cannot be digested by the human host. They affect gut health and can contribute at the distal level to the pathophysiology of several diseases, including renal pathologies. METHODS: SCFA levels were measured in chronic kidney disease (CKD) patients (n = 54) at different stages of the disease and associations with renal function and inflammation parameters were examined. The impact of propionate and butyrate in pathways triggered in tubular cells under inflammatory conditions was analysed using genome-wide expression assays. Finally, a pre-clinical mouse model of folic acid-induced transition from acute kidney injury to CKD was used to analyse the preventive and therapeutic potential of these microbial metabolites in the development of CKD. RESULTS: Faecal levels of propionate and butyrate in CKD patients gradually reduce as the disease progresses, and do so in close association with established clinical parameters for serum creatinine, blood urea nitrogen and the estimated glomerular filtration rate. Propionate and butyrate jointly downregulated the expression of 103 genes related to inflammatory processes and immune system activation triggered by TNF-α in tubular cells. In vivo, the administration of propionate and butyrate, either before or soon after injury, respectively prevented and slowed the progression of damage. This was indicated by a decrease in renal injury markers, the expression of pro-inflammatory and pro-fibrotic markers, and recovery of renal function over the long term. CONCLUSIONS: Propionate and butyrate levels are associated with a progressive loss of renal function in CKD patients. Early administration of these SCFAs prevents disease advancement in a pre-clinical model of acute renal damage, demonstrating their therapeutic potential independently of the gut microbiota.

3.
J Pediatr Gastroenterol Nutr ; 78(4): 836-845, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38344848

RESUMEN

OBJECTIVE: Analyze fecal and blood samples at point of diagnosis in IgE mediated cow's milk protein allergy (CMPA) and non-IgE mediated (NIM)-CMPA patients to look for potential new biomarkers. PATIENTS AND METHODS: Fourteen patients with IgE mediated CMPA and 13 with NIM-CMPA were recruited in three hospitals in the north of Spain, and were compared with 25 infants from a control group of the same age range. To characterize intestinal microbiota, 16S rDNA gene and internal transcribed spacer amplicons of bifidobacteria were sequenced with Illumina technology. Fatty acids were analyzed by gas chromatography, meanwhile intestinal inflammation markers were quantified by enzyme-linked immunosorbent assay and a multiplex system. Immunological analysis of blood was performed by flow cytometry. RESULTS: The fecal results obtained in the NIM-CMPA group stand out. Among them, a significant reduction in the abundance of Bifidobacteriaceae and Bifidobacterium sequences with respect to controls was observed. Bifidobacterial species were also different, highlighting the lower abundance of Bifidobacterium breve sequences. Fecal calprotectin levels were found to be significantly elevated in relation to IgE mediated patients. Also, a higher excretion of IL-10 and a lower excretion of IL-1ra and platelet derived growth factor-BB was found in NIM-CMPA patients. CONCLUSIONS: The differential fecal parameters found in NIM-CMPA patients could be useful in the diagnosis of NIM food allergy to CM proteins.


Asunto(s)
Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Hipersensibilidad a la Leche , Lactante , Femenino , Animales , Humanos , Bovinos , Inmunoglobulina E , Hipersensibilidad a la Leche/diagnóstico , Proteínas de la Leche
4.
Vaccines (Basel) ; 12(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38932408

RESUMEN

Specific T cell responses against SARS-CoV-2 provided an overview of acquired immunity during the pandemic. Anti-SARS-CoV-2 immunity determines the severity of acute illness, but also might be related to the possible persistence of symptoms (long COVID). We retrospectively analyzed ex vivo longitudinal CD8+ T cell responses in 26 COVID-19 patients diagnosed with severe disease, initially (1 month) and long-term (10 months), and in a cohort of 32 vaccinated healthcare workers without previous SARS-CoV-2 infection. We used peptide-human leukocyte antigen (pHLA) dextramers recognizing 26 SARS-CoV-2-derived epitopes of viral and other non-structural proteins. Most patients responded to at least one of the peptides studied, mainly derived from non-structural ORF1ab proteins. After 10 months follow-up, CD8+ T cell responses were maintained at long term and reaction against certain epitopes (A*01:01-ORF1ab1637) was still detected and functional, showing a memory-like phenotype (CD127+ PD-1+). The total number of SARS-CoV-2-specific CD8+ T cells was significantly associated with protection against long COVID in these patients. Compared with vaccination, infected patients showed a less effective immune response to spike protein-derived peptides restricted by HLA. So, the A*01:01-S865 and A*24:02-S1208 dextramers were only recognized in vaccinated individuals. We conclude that initial SARS-CoV-2-specific CD8+ T cell response could be used as a marker to understand the evolution of severe disease and post-acute sequelae after SARS-CoV-2 infection.

5.
Biomed Pharmacother ; 174: 116492, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537579

RESUMEN

Targeting epigenetic mechanisms has emerged as a potential therapeutic approach for the treatment of kidney diseases. Specifically, inhibiting the bromodomain and extra-terminal (BET) domain proteins using the small molecule inhibitor JQ1 has shown promise in preclinical models of acute kidney injury (AKI) and chronic kidney disease (CKD). However, its clinical translation faces challenges due to issues with poor pharmacokinetics and side effects. Here, we developed engineered liposomes loaded with JQ1 with the aim of enhancing kidney drug delivery and reducing the required minimum effective dose by leveraging cargo protection. These liposomes efficiently encapsulated JQ1 in both the membrane and core, demonstrating superior therapeutic efficacy compared to freely delivered JQ1 in a mouse model of kidney ischemia-reperfusion injury. JQ1-loaded liposomes (JQ1-NPs) effectively targeted the kidneys and only one administration, one-hour after injury, was enough to decrease the immune cell (neutrophils and monocytes) infiltration to the kidney-an early and pivotal step to prevent damage progression. By inhibiting BRD4, JQ1-NPs suppress the transcription of pro-inflammatory genes, such as cytokines (il-6) and chemokines (ccl2, ccl5). This success not only improved early the kidney function, as evidenced by decreased serum levels of BUN and creatinine in JQ1-NPs-treated mice, along with reduced tissue expression of the damage marker, NGAL, but also halted the production of extracellular matrix proteins (Fsp-1, Fn-1, α-SMA and Col1a1) and the fibrosis development. In summary, this work presents a promising nanotherapeutic strategy for AKI treatment and its progression and provides new insights into renal drug delivery.


Asunto(s)
Azepinas , Proteínas que Contienen Bromodominio , Progresión de la Enfermedad , Riñón , Liposomas , Ratones Endogámicos C57BL , Proteínas Nucleares , Insuficiencia Renal Crónica , Daño por Reperfusión , Triazoles , Animales , Azepinas/farmacología , Azepinas/administración & dosificación , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Triazoles/farmacología , Triazoles/administración & dosificación , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Ratones , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Masculino , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Modelos Animales de Enfermedad , Nanopartículas , Proteínas de Ciclo Celular/antagonistas & inhibidores
6.
Int J Biol Sci ; 20(5): 1547-1562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481808

RESUMEN

Renal ischemia-reperfusion injury (IRI) leads to endoplasmic reticulum (ER) stress, thereby initiating the unfolded protein response (UPR). When sustained, this response may trigger the inflammation and tubular cell death that acts to aggravate the damage. Here, we show that knockdown of the BET epigenetic reader BRD4 reduces the expression of ATF4 and XBP1 transcription factors under ER stress activation. BRD4 is recruited to the promoter of these highly acetylated genes, initiating gene transcription. Administration of the BET protein inhibitor, JQ1, one hour after renal damage induced by bilateral IRI, reveals reduced expression of ATF4 and XBP1 genes, low KIM-1 and NGAL levels and recovery of the serum creatinine and blood urea nitrogen levels. To determine the molecular pathways regulated by ATF4 and XBP1, we performed stable knockout of both transcription factors using CRISPR-Cas9 and RNA sequencing. The pathways triggered under ER stress were mainly XBP1-dependent, associated with an adaptive UPR, and partially regulated by JQ1. Meanwhile, treatment with JQ1 downmodulated most of the pathways regulated by ATF4 and related to the pathological processes during exacerbated UPR activation. Thus, BRD4 inhibition could be useful for curbing the maladaptive UPR activation mechanisms, thereby ameliorating the progression of renal disease.


Asunto(s)
Antineoplásicos , Daño por Reperfusión , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Nucleares/genética , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , Antineoplásicos/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA