Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 243: 117887, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38081345

RESUMEN

Emerging pollutants, particularly microplastics, present a significant threat to both the environment and human health. Traditional treatment methods lack targeted strategies for their removal. This study thoroughly investigated the efficacy of electrocoagulation as a method for efficiently extracting microplastics from water. Various critical operational parameters, including electrode combinations, pH levels, electrolyte concentrations, electrode geometries, configurations, current intensities, and reaction times, were systematically examined. The study systematically examined the impact of different combinations of aluminium (Al) and stainless steel (SS) electrodes, including Al-Al, SS-SS, Al-SS, and SS-Al. Among these combinations, it was found that the Al-Al pairing exhibited outstanding efficiency in microplastic removal, while simultaneously minimizing energy consumption. Initial pH emerged as a critical parameter, with a neutral pH of 7 demonstrating the highest removal efficiency. In the pursuit of optimizing parameters like electrolyte concentrations, electrode geometry, and configuration, it's noteworthy that consistently achieving removal efficiencies exceeding 90% has been a significant achievement. However, to ascertain economic efficiency, additional factors such as energy consumption, electrode usage, and post-treatment conductivity must be taken into account. To tackle the complexity posed by various parameters and criteria, using multi-criteria decision-making tools like TOPSIS is essential, as it has a track record of effectiveness in practical applications. The electrolyte concentration of 0.5 g L-1 is identified as optimal by TOPSIS analysis Additionally, the TOPSIS highlighted the superiority of cylindrical hollow wire mesh electrodes and established the monopolar parallel configuration as the most effective electrode connection method. The investigation carefully evaluated the effect of reaction time, determining that a 50-min window provides optimal microplastic removal efficiency. This refined system exhibited remarkable proficiency in eliminating microplastics of varying size ranges (0-75 µm, 75-150 µm, and 150-300 µm), achieving removal efficiencies of 90.67%, 93.6%, and 94.6%, respectively, at input concentration of 0.2 g L-1. The present study offers a comprehensive framework for optimizing electrocoagulation parameters, presenting a practical and highly effective strategy to address the critical issue of microplastic contamination in aquatic environments.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Microplásticos , Plásticos , Poliestirenos , Agua , Purificación del Agua/métodos , Electrocoagulación/métodos , Aluminio , Acero Inoxidable , Electrólitos , Eliminación de Residuos Líquidos/métodos
2.
Environ Sci Pollut Res Int ; 31(9): 13753-13765, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38265588

RESUMEN

In the realm of environmental challenges, microplastics have emerged as a pressing threat, presenting risks to both individuals and ecosystems. Conventional treatment plants are presently not equipped for effectively removing these minute contaminants. This study presents an investigation into the potential of a continuous flow biochar column, utilizing biochar derived from banana peel through a nitrogen-free slow pyrolysis process for the removal of microplastics. A systematic exploration of various parameters, including bed height, flow rate, inflow microplastic concentration, and microplastic size is undertaken to discern their impact on polystyrene removal efficiency. A peak removal efficiency of 92.16% has been achieved under specific conditions: a 6-cm bed height, a 3-mL/min flow rate, an inlet concentration of 0.05 g/L, and microplastic sizes ranging from 150 to 300 µm. The removal efficiency was inversely affected by flow rate while directly influenced by bed height. To deepen the understanding of polystyrene removal on biochar, a detailed characterization of the synthesized material was carried out. The removal of microplastics by banana peel biochar (BPB) is observed to be dominated by adsorption and filtration processes. The entanglement of microplastics with minuscule biochar granules, capture between particles, and entrapment in the porous system were identified as the mechanisms of removal. Leveraging the hydrophobic nature of polystyrene microplastics, interactions with the hydrophobic functional groups in BPB result in effective adsorption. This is further complemented by self-agglomeration and filtration mechanisms that synergistically contribute to the elimination of larger agglomerates. The findings thus provide a comprehensive understanding, offering hope for a more effective strategy in mitigating the environmental impact of microplastics.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Poliestirenos , Plásticos , Ecosistema , Contaminantes Químicos del Agua/análisis , Carbón Orgánico/química , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA