Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Appl Environ Microbiol ; 90(6): e0032524, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38752748

RESUMEN

Saccharomyces boulardii has been a subject of growing interest due to its potential as a probiotic microorganism with applications in gastrointestinal health, but the molecular cause for its probiotic potency has remained elusive. The recent discovery that S. boulardii contains unique mutations causing high acetic acid accumulation and inhibition of bacterial growth provides a possible clue. The natural S. boulardii isolates Sb.P and Sb.A are homozygous for the recessive mutation whi2S270* and accumulate unusually high amounts of acetic acid, which strongly inhibit bacterial growth. However, the homozygous whi2S270* mutation also leads to acetic acid sensitivity and acid sensitivity in general. In the present study, we have constructed a new S. boulardii strain, derived from the widely therapeutically used CMCN I-745 strain (isolated from the pharmaceutical product Enterol), producing even higher levels of acetic acid while keeping the same tolerance toward low pH as the parent Enterol (ENT) strain. This newly engineered strain, named ENT3, has a homozygous deletion of ACH1 and strong overexpression of ALD4. It is also able to accumulate much higher acetic acid concentrations when growing on low glucose levels, in contrast to the ENT wild-type and Sb.P strains. Moreover, we show the antimicrobial capacity of ENT3 against gut pathogens in vitro and observed that higher acetic acid production might correlate with better persistence in the gut in healthy mice. These findings underscore the possible role of the unique acetic acid production and its potential for improvement of the probiotic action of S. boulardii.IMPORTANCESuperior variants of the probiotic yeast Saccharomyces boulardii produce high levels of acetic acid, which inhibit the growth of bacterial pathogens. However, these strains also show increased acid sensitivity, which can compromise the viability of the cells during their passage through the stomach. In this work, we have developed by genetic engineering a variant of Saccharomyces boulardii that produces even higher levels of acetic acid and does not show enhanced acid sensitivity. We also show that the S. boulardii yeasts with higher acetic acid production persist longer in the gut, in agreement with a previous work indicating competition between probiotic yeast and bacteria for residence in the gut.


Asunto(s)
Ácido Acético , Probióticos , Saccharomyces boulardii , Ácido Acético/metabolismo , Saccharomyces boulardii/genética , Animales , Ratones
2.
Nutrients ; 16(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39203805

RESUMEN

Acetate-producing Saccharomyces cerevisiae var. boulardii strains could exert improved effects on ulcerative colitis, which here, was preclinically evaluated in an acute dextran sodium sulphate induced model of colitis. Nine-week-old female mice were divided into 12 groups, receiving either drinking water or 2.75% dextran sodium sulphate for 7 days, combined with a daily gavage of various treatments with different levels of acetate accumulation: sham control (phosphate buffered saline, no acetate), non-probiotic control (Baker's yeast, no acetate), probiotic control (Enterol®, transient acetate), and additionally several Saccharomyces cerevisiae var. boulardii strains with respectively no, high, and extra-high acetate accumulation. Disease activity was monitored daily, and feces samples were collected at different timepoints. On day 14, the mice were sacrificed, upon which blood and colonic tissue were collected for analysis. Disease activity in inflamed mice was lower when treated with the high-acetate-producing strain compared to sham and non-probiotic controls. The non-acetate-producing strain showed higher disease activity compared to the acetate-producing strains. Accordingly, higher histologic inflammation was observed in non- or transient-acetate-producing strains compared to the sham control, whereas this increase was not observed for high- and extra-high-acetate-producing strains upon induction of inflammation. These anti-inflammatory findings were confirmed by transcriptomic analysis of differentially expressed genes. Moreover, only the strain with the highest acetate production was superior in maintaining a stable gut microbial alpha-diversity upon inflammation. These findings support new possibilities for acetate-mediated management of inflammation in inflammatory bowel disease by administrating high-acetate-producing Saccharomyces cerevisae var. boulardii strains.


Asunto(s)
Acetatos , Colitis , Sulfato de Dextran , Probióticos , Saccharomyces cerevisiae , Animales , Femenino , Ratones , Saccharomyces cerevisiae/genética , Colitis/inducido químicamente , Colitis/terapia , Modelos Animales de Enfermedad , Colon/metabolismo , Colon/microbiología , Colon/patología , Saccharomyces boulardii , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/terapia , Colitis Ulcerosa/microbiología , Mutación , Microbioma Gastrointestinal , Heces/microbiología , Ratones Endogámicos C57BL
3.
Mol Cell Biol ; 42(4): e0056021, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35311587

RESUMEN

Whole-genome (WG) transformation (WGT) with DNA from the same or another species has been used to obtain strains with superior traits. Very few examples have been reported in eukaryotes-most apparently involving integration of large fragments of foreign DNA into the host genome. We show that WGT of a haploid acetic acid-sensitive Saccharomyces cerevisiae strain with DNA from a tolerant strain, but not from nontolerant strains, generated many tolerant transformants, some of which were stable upon subculturing under nonselective conditions. The most tolerant stable transformant contained no foreign DNA but only seven nonsynonymous single nucleotide polymorphisms (SNPs), of which none was present in the donor genome. The SNF4 mutation c.[805G→T], generating Snf4E269*, was the main causative SNP. Allele exchange of SNF4E269* or snf4Δ in industrial strains with unrelated genetic backgrounds enhanced acetic acid tolerance during fermentation under industrially relevant conditions. Our work reveals a surprisingly small number of mutations introduced by WGT, which do not bear any sequence relatedness to the genomic DNA (gDNA) of the donor organism, including the causative mutation. Spontaneous mutagenesis under protection of a transient donor gDNA fragment, maintained as extrachromosomal circular DNA (eccDNA), might provide an explanation. Support for this mechanism was obtained by transformation with genomic DNA of a yeast strain containing NatMX and selection on medium with nourseothricin. Seven transformants were obtained that gradually lost their nourseothricin resistance upon subculturing in nonselective medium. Our work shows that WGT is an efficient strategy for rapidly generating and identifying superior alleles capable of improving selectable traits of interest in industrial yeast strains.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Estreptotricinas , Proteínas Quinasas Activadas por AMP/genética , Ácido Acético , Alelos , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
4.
mBio ; 12(2)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33820824

RESUMEN

Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 "novel" hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11, and a whole chromosome 5 duplication, which contains TAC1b The latter was associated with increased expression of ERG11, TAC1b, and CDR2 but not CDR1 The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research.IMPORTANCECandida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/genética , Farmacorresistencia Fúngica Múltiple/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Mutación , Candida/patogenicidad , Candidiasis/microbiología , Evolución Molecular Dirigida/métodos , Humanos , Pruebas de Sensibilidad Microbiana
5.
G3 (Bethesda) ; 7(10): 3509-3520, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28860184

RESUMEN

Investigation of protein-protein interactions (PPI) in Candida albicans is essential for understanding the regulation of the signal transduction network that triggers its pathogenic lifestyle. Unique features of C. albicans, such as its alternative codon usage and incomplete meiosis, have enforced the optimization of standard genetic methods as well as development of novel approaches. Since the existing methods for detection of PPI are limited for direct visualization of the interacting complex in vivo, we have established a bimolecular fluorescence complementation (BiFC) assay in C. albicans, a powerful technique for studying PPI. We have developed an optimized set of plasmids that allows for N- and C-terminal tagging of proteins with split yeast-enhanced monomeric Venus fragments, so that all eight combinations of fusion orientations can be analyzed. With the use of our BiFC assay we demonstrate three interaction complexes in vivo, which were also confirmed by two-hybrid analysis. Our Candida-optimized BiFC assay represents a useful molecular tool for PPI studies and shows great promise in expanding our knowledge of molecular mechanisms of protein functions.


Asunto(s)
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Candida albicans/genética , Proteínas Fúngicas/genética , Microscopía Confocal , Plásmidos , Mapeo de Interacción de Proteínas , Proteómica , Técnicas del Sistema de Dos Híbridos
6.
Artículo en Inglés | MEDLINE | ID: mdl-25882225

RESUMEN

Diapause is a state of arrested development during which insects cope with many external and internal stressful factors. European corn borer, Ostrinia nubilalis, overwinters as a fifth instar freeze-tolerant diapausing larva. In order to explore diapause-linked stress tolerance processes, the expression of selected genes coding for stress-related proteins-glutathione S-transferase (Gst), thioredoxin (Trx), glutaredoxin (Grx), ferritin (Fer), metallothionein (Mtn), and heat shock proteins Hsp90, Hsc70, Hsp20.4, and Hsp20.1-was assessed in the fat body of diapause-destined, warm (22 °C) and cold (5 °C) acclimated diapausing larvae using the quantitative real-time PCR. Gene expression was normalised to mRNA transcripts for Actin and Rps03, and relative expression was calculated using non-diapausing larvae as a control group. During the initiation phase of diapause, the abundance of mRNA transcripts of Grx, Hsp90, Hsc70, and Hsp20.1 was significantly upregulated, Trx, Fer, Mtn, and Hsp20.1 were unchanged, while only Gst was clearly downregulated in comparison to non-diapause control. Later, in the early phase of diapause, the expression of most genes (except Trx and Hsp20.1) was upregulated in warm-acclimated larvae, while only Trx and Hsp90 were upregulated in cold-acclimated larvae. Furthermore, the relative expression of all genes (except Trx) increased gradually throughout the diapause in cold-acclimated larvae. This result indicates that the half-life of mRNAs is prolonged during diapause at low temperature, which may lead to a gradual accumulation of mRNA transcripts. Our results show that both diapause programming and temperatures affect the expression of stress-related genes in Ostrinia nubilalis.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/genética , Diapausa de Insecto , Proteínas de Insectos/genética , Lepidópteros/metabolismo , Animales , Expresión Génica , Larva/genética , Larva/metabolismo , Lepidópteros/clasificación , Lepidópteros/genética , Lepidópteros/crecimiento & desarrollo , ARN Mensajero/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA