Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 27(5): 693-707, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21961709

RESUMEN

A linear quantitative structure activity relationship (QSAR) model is presented for predicting human immunodeficiency virus-1 (HIV-1) reverse transcriptase enzyme inhibition. The 2D QSAR and 3D-QSAR models were developed by stepwise multiple linear regression, partial least square (PLS) regression and k-nearest neighbor-molecular field analysis, PLS regression, respectively using a database consisting of 33 recently discovered benzoxazinones. The primary findings of this study is that the number of hydrogen atoms, number of (-NH2) group connected with solitary single bond alters the inhibition of HIV-1 reverse transcriptase. Further, presence of electrostatic, hydrophobic and steric field descriptors significantly affects the ability of benzoxazinone derivatives to inhibit HIV-1 reverse transcriptase. The selected descriptors could serve as a primer for the design of novel and potent antagonists of HIV-1 reverse transcriptase.


Asunto(s)
Transcriptasa Inversa del VIH/antagonistas & inhibidores , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/farmacología , Análisis de los Mínimos Cuadrados , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa
2.
Polymers (Basel) ; 14(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235916

RESUMEN

Epoxy nano composites containing micro and nano silica were prepared by varying the filler's weight loading as an attempt to investigate the effects of incorporating these fillers in influencing its mechanical properties. Mechanical properties characterizations include the evaluation of tensile. The mechanical properties of the epoxy composites were found to tremendously increase as both micro and nano silica were added together at a 1:1 wt.% ratio. For example, the highest values of Young's modulus were recorded to be 5.39 GPa for 25 wt.% loading (12.5 wt.% Micro + 12.5 wt.% nano), while Young's modulus values of 5.22 MPa and 5.32 MPa were recorded for micro and nano silica, respectively, at the same weight loading. The most outstanding results were observed at 25 wt.% hybrids (12.5 wt.% micro silica + 12.5 wt.% nano silica), where the values of Young's modulus were increased by 228% compared to the neat epoxy. This study successfully demonstrated synergistic effects demonstrated by combining micro and nano silica fillers, which created an interaction that significantly enhanced the Young's modulus of epoxy composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA