Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Lipid Res ; 63(11): 100293, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209894

RESUMEN

Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibits the clearance of low-density lipoprotein (LDL) cholesterol (LDL-C) from plasma by directly binding with the LDL receptor (LDLR) and sending the receptor for lysosomal degradation. As the interaction promotes elevated plasma LDL-C levels, and therefore a predisposition to cardiovascular disease, PCSK9 has attracted intense interest as a therapeutic target. Despite this interest, an orally bioavailable small-molecule inhibitor of PCSK9 with extensive lipid-lowering activity is yet to enter the clinic. We report herein the discovery of NYX-PCSK9i, an orally bioavailable small-molecule inhibitor of PCSK9 with significant cholesterol-lowering activity in hyperlipidemic APOE∗3-Leiden.CETP mice. NYX-PCSK9i emerged from a medicinal chemistry campaign demonstrating potent disruption of the PCSK9-LDLR interaction in vitro and functional protection of the LDLR of human lymphocytes from PCSK9-directed degradation ex vivo. APOE∗3-Leiden.CETP mice orally treated with NYX-PCSK9i demonstrated a dose-dependent decrease in plasma total cholesterol of up to 57%, while its combination with atorvastatin additively suppressed plasma total cholesterol levels. Importantly, the majority of cholesterol lowering by NYX-PCSK9i was in non-HDL fractions. A concomitant increase in total plasma PCSK9 levels and significant increase in hepatic LDLR protein expression strongly indicated on-target function by NYX-PCSK9i. Determinations of hepatic lipid and fecal cholesterol content demonstrated depletion of liver cholesteryl esters and promotion of fecal cholesterol elimination with NYX-PCSK9i treatment. All measured in vivo biomarkers of health indicate that NYX-PCSK9i has a good safety profile. NYX-PCSK9i is a potential new therapy for hypercholesterolemia with the capacity to further enhance the lipid-lowering activities of statins.


Asunto(s)
Anticolesterolemiantes , Hiperlipidemias , Inhibidores de PCSK9 , Receptores de LDL , Animales , Humanos , Ratones , Apolipoproteínas E , Colesterol , LDL-Colesterol , Receptores de LDL/genética , Receptores de LDL/metabolismo , Inhibidores de PCSK9/farmacología , Hiperlipidemias/tratamiento farmacológico , Anticolesterolemiantes/farmacología
2.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502205

RESUMEN

Tropomyosin (Tpm) has been regarded as the master regulator of actin dynamics. Tpms regulate the binding of the various proteins involved in restructuring actin. The actin cytoskeleton is the predominant cytoskeletal structure in dendritic spines. Its regulation is critical for spine formation and long-term activity-dependent changes in synaptic strength. The Tpm isoform Tpm3.1 is enriched in dendritic spines, but its role in regulating the synapse structure and function is not known. To determine the role of Tpm3.1, we studied the synapse structure and function of cultured hippocampal neurons from transgenic mice overexpressing Tpm3.1. We recorded hippocampal field excitatory postsynaptic potentials (fEPSPs) from brain slices to examine if Tpm3.1 overexpression alters long-term synaptic plasticity. Tpm3.1-overexpressing cultured neurons did not show a significantly altered dendritic spine morphology or synaptic activity. Similarly, we did not observe altered synaptic transmission or plasticity in brain slices. Furthermore, expression of Tpm3.1 at the postsynaptic compartment does not increase the local F-actin levels. The results suggest that although Tpm3.1 localises to dendritic spines in cultured hippocampal neurons, it does not have any apparent impact on dendritic spine morphology or function. This is contrary to the functional role of Tpm3.1 previously observed at the tip of growing neurites, where it increases the F-actin levels and impacts growth cone dynamics.


Asunto(s)
Espinas Dendríticas/fisiología , Potenciales Postsinápticos Excitadores , Hipocampo/fisiología , Neurogénesis , Plasticidad Neuronal , Sinapsis/fisiología , Tropomiosina/metabolismo , Citoesqueleto de Actina , Animales , Células Cultivadas , Femenino , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas , Tropomiosina/genética
3.
Bioorg Med Chem ; 28(6): 115344, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32051094

RESUMEN

Proprotein convertase (PC) subtilisin kexin type 9 (PCSK9) inhibits the clearance of low density lipoprotein (LDL) cholesterol from plasma by directly interacting with the LDL receptor (LDLR). As the interaction promotes elevated plasma LDL cholesterol levels and a predisposition to cardiovascular disease (CVD), it has attracted much interest as a therapeutic target. While anti-PCSK9 monoclonal antibodies have been successful in the treatment of hypercholesteremia by decreasing CVD risk, their high cost and a requirement for injection have prohibited widespread use. The advent of an orally bioavailable small molecule inhibitor of the PCSK9-LDLR interaction is an attractive alternative, however efforts have been tempered as the binding interface is unfavourable for binding by small organic molecules. Despite its challenging nature, we report herein the discovery of compound 3f as a small molecule inhibitor of PCSK9. The kinase inhibitor nilotinib emerged from a computational screen that was applied to identify compounds that may bind to a cryptic groove within PCSK9 and proximal to the LDLR-binding interface. A subsequent in vitro PCSK9-LDLR binding assay established that nilotinib was a bona fide but modest inhibitor of the interaction (IC50 = 9.8 µM). Through multiple rounds of medicinal chemistry, 3f emerged as a lead-like molecule by demonstrating disruption of the PCSK9-LDLR interaction at nanomolar levels in vitro (IC50 = 537 nM) with no inhibitory activity (IC50 > 10 µM) against a small panel of kinases. Compound 3f restored LDL uptake by liver cells at sub-micromolar levels and demonstrated excellent bioavailability when delivered subcutaneously in mice. Most significantly, compound 3f lowered total cholesterol levels in the plasma of wild-type mice, thereby providing proof-of-concept that the notion of a small molecule inhibitor against PCSK9 is therapeutically viable.


Asunto(s)
Inhibidores de PCSK9 , Receptores de LDL/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos , Femenino , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estructura Molecular , Proproteína Convertasa 9/deficiencia , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
4.
Cell Mol Neurobiol ; 38(8): 1557-1563, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30218404

RESUMEN

Overcoming neurite inhibition is integral for restoring neuronal connectivity after CNS injury. Actin dynamics are critical for neurite growth cone formation and extension. The tropomyosin family of proteins is a regarded as master regulator of actin dynamics. This study investigates tropomyosin isoform 3.1 (Tpm3.1) as a potential candidate for overcoming an inhibitory substrate, as it is known to influence neurite branching and outgrowth. We designed a microfluidic device that enables neurons to be grown adjacent to an inhibitory substrate, Nogo-66. Results show that neurons, overexpressing hTpm3.1, have an increased propensity to overcome Nogo-66 inhibition. We propose Tpm3.1 as a potential target for promoting neurite growth in an inhibitory environment in the central nervous system.


Asunto(s)
Hipocampo/citología , Dispositivos Laboratorio en un Chip , Proyección Neuronal , Neuronas/metabolismo , Tropomiosina/metabolismo , Animales , Humanos , Proyección Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Nogo/farmacología , Reproducibilidad de los Resultados
5.
Neurobiol Dis ; 97(Pt A): 24-35, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27816769

RESUMEN

BACKGROUND: The recently diagnosed leukodystrophy Hypomyelination with Brain stem and Spinal cord involvement and Leg spasticity (HBSL) is caused by mutations of the cytoplasmic aspartyl-tRNA synthetase geneDARS. The physiological role of DARS in translation is to accurately pair aspartate with its cognate tRNA. Clinically, HBSL subjects show a distinct pattern of hypomyelination and develop progressive leg spasticity, variable cognitive impairment and epilepsy. To elucidate the underlying pathomechanism, we comprehensively assessed endogenous DARS expression in mice. Additionally, aiming at creating the first mammalian HBSL model, we genetically engineered and phenotyped mutant mice with a targetedDarslocus. RESULTS: DARS, although expressed in all organs, shows a distinct expression pattern in the adult brain with little immunoreactivity in macroglia but enrichment in neuronal subpopulations of the hippocampus, cerebellum, and cortex. Within neurons, DARS is mainly located in the cell soma where it co-localizes with other components of the translation machinery. Intriguingly, DARS is also present along neurites and at synapses, where it potentially contributes to local protein synthesis.Dars-null mice are not viable and die before embryonic day 11. Heterozygous mice with only one functionalDarsallele display substantially reduced DARS levels in the brain; yet these mutants show no gross abnormalities, including unchanged motor performance. However, we detected reduced pre-pulse inhibition of the acoustic startle response indicating dysfunction of attentional processing inDars+/-mice. CONCLUSIONS: Our results, for the first time, show an in-depth characterization of the DARS tissue distribution in mice, revealing surprisingly little uniformity across brain regions or between the major neural cell types. The complete loss of DARS function is not tolerated in mice suggesting that the identified HBSL mutations in humans retain some residual enzyme activity. The mild phenotype of heterozygousDars-null carriers indicates that even partial restoration of DARS levels would be therapeutically relevant. Despite the fact that they do not resemble the full spectrum of clinical symptoms, the robust pre-pulse inhibition phenotype ofDars+/-mice will be instrumental for future preclinical therapeutic efficacy studies. In summary, our data is an important contribution to a better understanding of DARS function and HBSL pathology.


Asunto(s)
Aspartato-ARNt Ligasa/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/enzimología , Animales , Aspartato-ARNt Ligasa/genética , Astrocitos/enzimología , Astrocitos/patología , Atención/fisiología , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Neuronas/enzimología , Neuronas/patología , Oligodendroglía/enzimología , Oligodendroglía/patología , Fenotipo , Inhibición Prepulso/fisiología , Reflejo de Sobresalto/fisiología , Médula Espinal/enzimología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/patología , Sinaptosomas/enzimología , Proteína de Unión al GTP ran/metabolismo
6.
APL Bioeng ; 7(4): 046103, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37854060

RESUMEN

Atherosclerosis is a primary precursor of cardiovascular disease (CVD), the leading cause of death worldwide. While proprotein convertase subtilisin/kexin 9 (PCSK9) contributes to CVD by degrading low-density lipoprotein receptors (LDLR) and altering lipid metabolism, PCSK9 also influences vascular inflammation, further promoting atherosclerosis. Here, we utilized a vascular microphysiological system to test the effect of PCSK9 activation or repression on the initiation of atherosclerosis and to screen the efficacy of a small molecule PCSK9 inhibitor. We have generated PCSK9 over-expressed (P+) or repressed (P-) human induced pluripotent stem cells (iPSCs) and further differentiated them to smooth muscle cells (viSMCs) or endothelial cells (viECs). Tissue-engineered blood vessels (TEBVs) made from P+ viSMCs and viECs resulted in increased monocyte adhesion compared to the wild type (WT) or P- equivalents when treated with enzyme-modified LDL (eLDL) and TNF-α. We also found significant viEC dysfunction, such as increased secretion of VCAM-1, TNF-α, and IL-6, in P+ viECs treated with eLDL and TNF-α. A small molecule compound, NYX-1492, that was originally designed to block PCSK9 binding with the LDLR was tested in TEBVs to determine its effect on lowering PCSK9-induced inflammation. The compound reduced monocyte adhesion in P+ TEBVs with evidence of lowering secretion of VCAM-1 and TNF-α. These results suggest that PCSK9 inhibition may decrease vascular inflammation in addition to lowering plasma LDL levels, enhancing its anti-atherosclerotic effects, particularly in patients with elevated chronic inflammation.

7.
Front Mol Neurosci ; 15: 1061257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568275

RESUMEN

The leukodystrophy Canavan disease is a fatal white matter disorder caused by loss-of-function mutations of the aspartoacylase-encoding ASPA gene. There are no effective treatments available and experimental gene therapy trials have failed to provide sufficient amelioration from Canavan disease symptoms. Preclinical studies suggest that Canavan disease-like pathology can be addressed by either ASPA gene replacement therapy or by lowering the expression of the N-acetyl-L-aspartate synthesizing enzyme NAT8L. Both approaches individually prevent or even reverse pathological aspects in Canavan disease mice. Here, we combined both strategies and assessed whether intracranial adeno-associated virus-mediated gene delivery to a Canavan disease mouse model at 12 weeks allows for reversal of existing pathology. This was enabled by a single vector dual-function approach. In vitro and in vivo biopotency assessment revealed significant knockdown of neuronal Nat8l paired with robust ectopic aspartoacylase expression. Following nomination of the most efficient cassette designs, we performed proof-of-concept studies in post-symptomatic Aspa-null mice. Late-stage gene therapy resulted in a decrease of brain vacuoles and long-term reversal of all pathological hallmarks, including loss of body weight, locomotor impairments, elevated N-acetyl-L-aspartate levels, astrogliosis, and demyelination. These data suggest feasibility of a dual-function vector combination therapy, directed at replacing aspartoacylase with concomitantly suppressing N-acetyl-L-aspartate production, which holds potential to permanently alleviate Canavan disease symptoms and expands the therapeutic window towards a treatment option for adult subjects.

8.
Front Mol Neurosci ; 11: 81, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29615866

RESUMEN

Translation of mRNA into protein is an evolutionarily conserved, fundamental process of life. A prerequisite for translation is the accurate charging of tRNAs with their cognate amino acids, a reaction catalyzed by specific aminoacyl-tRNA synthetases. One of these enzymes is the aspartyl-tRNA synthetase DARS, which pairs aspartate with its corresponding tRNA. Missense mutations of the gene encoding DARS result in the leukodystrophy hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL) with a distinct pattern of hypomyelination, motor abnormalities, and cognitive impairment. A thorough understanding of the DARS expression domains in the central nervous system is essential for the development of targeted therapies to treat HBSL. Here, we analyzed endogenous DARS expression on the mRNA and protein level in different brain regions and cell types of human post mortem brain tissue as well as in human stem cell derived neurons, oligodendrocytes, and astrocytes. DARS expression is significantly enriched in the cerebellum, a region affected in HBSL patients and important for motor control. Although obligatorily expressed in all cells, DARS shows a distinct expression pattern with enrichment in neurons but only low abundance in oligodendrocytes, astrocytes, and microglia. Our results reveal little homogeneity across the different cell types, largely matching previously published data in the murine brain. This human gene expression study will significantly contribute to the understanding of DARS gene function and HBSL pathology and will be instrumental for future development of animal models and targeted therapies. In particular, we anticipate high benefit from a gene replacement approach in neurons of HBSL mouse models, given the abundant endogenous DARS expression in this lineage cell.

9.
Front Cell Neurosci ; 11: 421, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311841

RESUMEN

Nerve cell connections, formed in the developing brain of mammals, undergo a well-programmed process of maturation with changes in their molecular composition over time. The major structural element at the post-synaptic specialization is the actin cytoskeleton, which is composed of different populations of functionally distinct actin filaments. Previous studies, using ultrastructural and light imaging techniques have established the presence of different actin filament populations at the post-synaptic site. However, it remains unknown, how these different actin filament populations are defined and how their molecular composition changes over time. In the present study, we have characterized changes in a core component of actin filaments, the tropomyosin (Tpm) family of actin-associated proteins from embryonal stage to the adult stage. Using biochemical fractionation of mouse brain tissue, we identified the tropomyosin Tpm4.2 as the major post-synaptic Tpm. Furthermore, we found age-related differences in the composition of Tpms at the post-synaptic compartment. Our findings will help to guide future studies that aim to define the functional properties of actin filaments at different developmental stages in the mammalian brain.

10.
Cytoskeleton (Hoboken) ; 73(6): 316-28, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27126680

RESUMEN

Tropomodulins (Tmods) cap F-actin pointed ends and have altered expression in the brain in neurological diseases. The function of Tmods in neurons has been poorly studied and their role in neurological diseases is entirely unknown. In this article, we show that Tmod1 and Tmod2, but not Tmod3, are positive regulators of dendritic complexity and dendritic spine morphology. Tmod1 increases dendritic branching distal from the cell body and the number of filopodia/thin spines. Tmod2 increases dendritic branching proximal to the cell body and the number of mature dendritic spines. Tmods utilize two actin-binding sites and two tropomyosin (Tpm)-binding sites to cap F-actin. Overexpression of Tmods with disrupted Tpm-binding sites indicates that Tmod1 and Tmod2 differentially utilize their Tpm- and actin-binding sites to affect morphology. Disruption of Tmod1's Tpm-binding sites abolished the overexpression phenotype. In contrast, overexpression of the mutated Tmod2 caused the same phenotype as wild type overexpression. Proximity ligation assays indicate that the mutated Tmods are shuttled similarly to wild type Tmods. Our data begins to uncover the roles of Tmods in neural development and the mechanism by which Tmods alter neural morphology. These observations in combination with altered Tmod expression found in several neurological diseases also suggest that dysregulation of Tmod expression may be involved in the pathology of these diseases. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Dendritas/metabolismo , Tropomodulina/metabolismo , Animales , Dendritas/genética , Mutación , Células PC12 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Tropomodulina/genética
11.
Neurobiol Aging ; 43: 89-100, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27255818

RESUMEN

The anatomical progression of neurofibrillary tangle pathology throughout Alzheimer's disease (AD) pathogenesis runs inverse to the pattern of developmental myelination, with the disease preferentially affecting thinly myelinated regions. Myelin is comprised 80% of lipids, and the prototypical myelin lipids, galactosylceramide, and sulfatide are critical for neurological function. We observed severe depletion of galactosylceramide and sulfatide in AD brain tissue, which can be traced metabolically to the loss of their biosynthetic precursor, very long chain ceramide. The synthesis of very long chain ceramides is catalyzed by ceramide synthase 2 (CERS2). We demonstrate a significant reduction in CERS2 activity as early as Braak stage I/II in temporal cortex, and Braak stage III/IV in hippocampus and frontal cortex, indicating that loss of myelin-specific ceramide synthase activity precedes neurofibrillary tangle pathology in cortical regions. These findings open a new vista on AD pathogenesis by demonstrating a defect in myelin lipid biosynthesis at the preclinical stages of the disease. We posit that, over time, this defect contributes significantly to myelin deterioration, synaptic dysfunction, and neurological decline.


Asunto(s)
Enfermedad de Alzheimer/etiología , Corteza Cerebral/metabolismo , Proteínas de la Membrana/deficiencia , Vaina de Mielina/metabolismo , Esfingosina N-Aciltransferasa/deficiencia , Tauopatías/etiología , Proteínas Supresoras de Tumor/deficiencia , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Neurosci Lett ; 609: 223-8, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26499959

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease and familial ALS accounts for 10% of cases. The identification of familial ALS mutations in the actin-binding protein profilin 1 directly implicates actin dynamics and regulation in the pathogenesis of ALS. The mechanism by which these mutations cause ALS is unknown. In this study we show that expression of the ALS-associated actin-binding deficient mutant of PFN1 (PFN1(C71G)) results in increased dendritic arborisation and spine formation, and cytoplasmic inclusions in cultured mouse hippocampal neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Dendritas/ultraestructura , Hipocampo/citología , Profilinas/metabolismo , Animales , Dendritas/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Mutación , Neuronas/metabolismo , Neuronas/ultraestructura , Cultivo Primario de Células , Profilinas/genética , Agregado de Proteínas
13.
Int J Alzheimers Dis ; 2012: 873270, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22720190

RESUMEN

Both Alzheimer's disease (AD) and frontotemporal dementia (FTD) are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to the umbrella term "tauopathies" for these conditions, also emphasizing the central role of tau in AD and FTD. Generation of transgenic mouse models expressing human tau in the brain has contributed to the understanding of the pathomechanistic role of tau in disease. To reveal the physiological functions of tau in vivo, several knockout mouse strains with deletion of the tau-encoding MAPT gene have been established over the past decade, using different gene targeting constructs. Surprisingly, when initially introduced tau knockout mice presented with no overt phenotype or malformations. The number of publications using tau knockout mice has recently markedly increased, and both behavioural changes and motor deficits have been identified in aged mice of certain strains. Moreover, tau knockout mice have been instrumental in identifying novel functions of tau, both in cultured neurons and in vivo. Importantly, tau knockout mice have significantly contributed to the understanding of the pathophysiological interplay between Aß and tau in AD. Here, we review the literature that involves tau knockout mice to summarize what we have learned so far from depleting tau in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA