Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 63(29): 13346-13357, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38989677

RESUMEN

Designing ligand architectures that can mimic enzyme active sites is a promising approach for developing efficient small molecule activation catalysts for sustainable energy applications. Some key design features include chemically distinct binding pockets for multiple metal centers and a three-dimensional structure that controls the positioning of catalytic sites. With these principles in mind, mono- and bimetallic unsymmetric cofacial palladium complexes, 2 and 3, respectively, bearing ligands with calixpyrrole and salen coordination sites, or "salixpyrrole" ligands, are reported. These species were accessed in a straightforward Schiff-base reaction with appreciable yields. In addition, both 2 and 3 were found to be active hydrogen evolution electrocatalysts using para-toluenesulfonic acid monohydrate as the proton source. The two salixpyrrole species displayed different mechanisms of action, with 2 showing a second-order dependence on acid concentration, whereas 3 exhibited a first-order dependence. Moreover, the bimetallic catalyst was significantly more efficient, with higher turnover frequencies, 4640 s-1 vs 1680 s-1 for 2, and lower overpotentials, 0.39 V vs 0.69 V for 2. The results reported herein provide proof-of-concept that bimetallic catalysts with chemically distinct binding sites demonstrate enhanced catalytic properties in comparison to monometallic or symmetric analogues.

2.
Chemistry ; 29(65): e202301920, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37665793

RESUMEN

Incorporating design elements from homogeneous catalysts to construct well defined active sites on electrode surfaces is a promising approach for developing next generation electrocatalysts for energy conversion reactions. Furthermore, if functionalities that control the electrode microenvironment could be integrated into these active sites it would be particularly appealing. In this context, a square planar nickel calixpyrrole complex, Ni(DPMDA) (DPMDA=2,2'-((diphenylmethylene)bis(1H-pyrrole-5,2-diyl))bis(methaneylylidene))bis(azaneylylidene))dianiline) with pendant amine groups is reported that forms a heterogeneous hydrogen evolution catalyst using anilinium tetrafluoroborate as the proton source. The supported Ni(DPMDA) catalyst was surprisingly stable and displayed fast reaction kinetics with turnover frequencies (TOF) up to 25,900 s-1 or 366,000 s-1 cm-2 . Kinetic isotope effect (KIE) studies revealed a KIE of 5.7, and this data, combined with Tafel slope analysis, suggested that a proton-coupled electron transfer (PCET) process involving the pendant amine groups was rate-limiting. While evidence of an outer-sphere reduction of the Ni(DPMDA) catalyst was observed, it is hypothesized that the control over the secondary coordination sphere provided by the pendant amines facilitated such high TOFs and enabled the PCET mechanism. The results reported herein provide insight into heterogeneous catalyst design and approaches for controlling the secondary coordination sphere on electrode surfaces.

3.
J Am Chem Soc ; 136(4): 1367-80, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24446857

RESUMEN

After their treatment with LiAlH4 and then alcohol, new iron dicarbonyl complexes mer-trans-[Fe(Br)(CO)2(P-CH═N-P')][BF4] (where P-CH═N-P' = R2PCH2CH═NCH2CH2PPh2 and R = Cy or iPr or P-CH═N-P' = (S,S)- Cy2PCH2CH═NCH(Me)CH(Ph)PPh2) are catalysts for the hydrogenation of ketones in THF solvent with added KOtBu at 50 °C and 5 atm H2. Complexes with R = Ph are not active. With the enantiopure complex, alcohols are produced with an enantiomeric excess of up to 85% (S) at TOF up to 2000 h(-1), TON of up to 5000, for a range of ketones. An activated imine is hydrogenated to the amine in 90% ee at a TOF 20 h(-1)and TON 99. This is a significant advance in asymmetric pressure hydrogenation using iron. The complexes are prepared in two steps: (1) a one-pot reaction of phosphonium dimers ([cyclo-(PR2CH2CH(OH)(-))2][Br]2), KOtBu, FeBr2, and Ph2PCH2CH2NH2 (or (S,S)-Ph2PCH(Ph)CH(Me)NH2 for the enantiopure complex) in THF under a CO atmosphere to produce the complexes cis- and trans-[Fe(Br)2(CO)(P-CH═N-P')]; (2) the reaction of these with AgBF4 under CO(g) to afford the dicarbonyl complexes in high yield (50-90%). NMR and DFT studies of the process of precatalyst activation show that the dicarbonyl complexes are converted first to hydride-aluminum hydride complexes where the imine of the P-CH═N-P' ligand is reduced to an amide [P-CH2N-P'](-) with aluminum hydrides still bound to the nitrogen. These hydride species react with alcohol to give monohydride amine iron compounds FeH(OR')(CO)(P-CH2NH-P'), R' = Me, CMe2Et as well as the iron(0) complex Fe(CO)2(P-CH2NH-P') under certain conditions.

4.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 4): m144, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24826104

RESUMEN

In the title compound, [FeBr(C9H9NO2S)(C30H30N2P2)][B(C6H5)4], the Fe(II) ion is in a distorted octa-hedral CBrN2P2 coordination geometry with a P-Fe-P angle of 109.95 (3)°. The relative orientation of the p-toluene-sulfonyl-methyl isocyanide ligand is defined by the C-S-C-N torsion angle of 67.1 (2)°. In the crystal, pairs of weak C-H⋯O hydrogen bonds connect the cations into inversion dimers, forming R 2 (2)(8) rings.

5.
Inorg Chem ; 51(17): 9322-32, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22909295

RESUMEN

A series of four tripodal phosphine oxide ligands, (OPR(2))(2)CHCH(2)POR(2) (1a-1d), and four mixed phosphine-phosphine oxide ligands, (OPR(2))(2)CHCH(2)PR(2) (3a-3d), were synthesized and coordinated to yttrium to produce Y(NO(3))(3)[(OPR(2))(2)CHCH(2)POR(2)] (2a-2d) and Y(NO(3))(3)[(OPR(2))(2)CHCH(2)PR(2)](OPPh(3)) (4a-4d) complexes. The previously reported ligand 1a and unknown phosphine oxide ligands 1b-1d were generated in an unprecedented trisubstitution reaction of bromoacetaldehyde diethyl acetal, while the novel partially reduced ligands 3a-3d were synthesized from 1a-1d according to a known literature protocol for the selective monoreduction of bisphosphine oxides. The neutral yttrium complexes 2a-2d are nine-coordinate and display a tricapped trigonal-prismatic geometry. Complexes 4a-4d are also neutral, nine-coordinate species and have a pendant phosphine functionality, which provides the potential to form bimetallic early-late transition-metal complexes. Additionally, yttrium complexes 2a-2d were activated with base and tested for the ring-opening polymerization of ε-caprolactone, but the results showed that base by itself was significantly more effective than the yttrium species investigated.

7.
Dalton Trans ; 44(27): 12119-27, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25373607

RESUMEN

Our group has developed a series of iron-based asymmetric transfer hydrogenation (ATH) catalysts for the reduction of polar double bonds. The activation of the precatalysts as well as the catalytic mechanism have been thoroughly investigated, but the decomposition pathways of these systems are poorly understood. Herein, we report a study of the deactivation pathways for an iron ATH catalyst under catalytically relevant conditions. The decomposition pathways were examined using experimental techniques and density functional theory (DFT) calculations. The major decomposition products that formed, Fe(CO)((Et)2PCH2CH2CHCHNCH2CH2P(Et)2) (3a) and Fe(CO)((Et)2PCH2CH2C(Ph)C(Ph)NCH2CH2P(Et)2) (3b), had two amido donors as well as a C=C bond on the diamine backbone of the tetradentate ligand. These species were identified by NMR studies and one was isolated as a bimetallic complex with Ru(II)Cp*. Two minor iron hydride species also formed concurrently with 3a, as determined by NMR studies, one of which was isolated and contained a fully saturated ligand as well as a hydride ligand. None of the compounds that were isolated were found to be active ATH catalysts.

8.
Chem Commun (Camb) ; 50(36): 4707-10, 2014 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-24675688

RESUMEN

A simple method for synthesizing diphosphine monosulfide species was developed utilizing lithium sulfide and chlorophosphine starting materials. This afforded 1,1,2,2-tetraphenyldiphosphine monosulfide (1), as well as 1,1,2,2-tetracyclohexyldiphosphine monosulfide (2), which could be used as convenient ligand precursors. Upon addition of 1 or 2 to the ruthenium compound Ru(C5Me5)(cod)Cl, the diphosphine monosulfides rearranged to give bidentate bis(ditertiaryphosphino)thioether ligands in Ru(C5Me5)(PPh2SPPh2)Cl (3) and Ru(C5Me5)(PCy2SPCy2)Cl (4).

9.
Dalton Trans ; 43(21): 7650-67, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24763699

RESUMEN

The asymmetric reduction of ketones and imines by transfer of hydrogen from isopropanol as the solvent catalyzed by metal complexes is a very useful method for preparing valuable enantioenriched alcohols and amines. Described here is the development of three generations of progressively more active iron catalysts for this transformation. Key features of this process of discovery involved the realization that one carbonyl ligand was needed (as in hydrogenases), the synthesis of modular ligands templated by iron, the elucidation of the mechanisms of catalyst activation and action, as well as the rational synthesis of precursors that lead directly and easily to the species in the catalytic cycle. The discovery that iron, an abundant element that is essential to life, can form catalysts of these hydrogenation reactions is a contribution to green chemistry.

10.
Dalton Trans ; 43(10): 4137-45, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24458017

RESUMEN

The phosphido complex RuCp*(PPh2CH=CHPPh2)(PPh2) (1) was exposed to a number of small molecules and was found to recognize and activate molecular oxygen in an unprecedented fashion: the ruthenium species split O2 in a ligand-based 4-electron reduction to produce an endo epoxide, as well as a phosphinito ligand. Based on XRD data, VT NMR studies, cyclooctene trapping studies, and crossover experiments it was determined that the reaction proceeded through an intramolecular mechanism in which initial oxidation of the phosphido ligand generated an end-on peroxo intermediate. This mechanism was also supported by computational studies and electrochemical experiments. In contrast, an analogue of 1, RuCp*(Ph2P(ortho-C6H4)PPh2)(PPh2) (3), reacted in an intermolecular fashion to generate two phosphinito ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA