Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 166(2): 314-327, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27345367

RESUMEN

Antigen presentation is essential for establishing immune tolerance and for immune responses against infectious disease and cancer. Although antigen presentation can be mediated by autophagy, here we demonstrate a pathway for mitochondrial antigen presentation (MitAP) that relies on the generation and trafficking of mitochondrial-derived vesicles (MDVs) rather than on autophagy/mitophagy. We find that PINK1 and Parkin, two mitochondrial proteins linked to Parkinson's disease (PD), actively inhibit MDV formation and MitAP. In absence of PINK1 or Parkin, inflammatory conditions trigger MitAP in immune cells, both in vitro and in vivo. MitAP and the formation of MDVs require Rab9 and Sorting nexin 9, whose recruitment to mitochondria is inhibited by Parkin. The identification of PINK1 and Parkin as suppressors of an immune-response-eliciting pathway provoked by inflammation suggests new insights into PD pathology.


Asunto(s)
Presentación de Antígeno , Mitocondrias/inmunología , Enfermedad de Parkinson/inmunología , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células Dendríticas/patología , Modelos Animales de Enfermedad , Inflamación/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Enfermedad de Parkinson/patología , Proteínas Quinasas/genética , Vesículas Transportadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética
2.
J Med Genet ; 60(10): 1006-1015, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37055166

RESUMEN

BACKGROUND: Enoyl-CoA hydratase short-chain 1 (ECHS1) is an enzyme involved in the metabolism of branched chain amino acids and fatty acids. Mutations in the ECHS1 gene lead to mitochondrial short-chain enoyl-CoA hydratase 1 deficiency, resulting in the accumulation of intermediates of valine. This is one of the most common causative genes in mitochondrial diseases. While genetic analysis studies have diagnosed numerous cases with ECHS1 variants, the increasing number of variants of uncertain significance (VUS) in genetic diagnosis is a major problem. METHODS: Here, we constructed an assay system to verify VUS function for ECHS1 gene. A high-throughput assay using ECHS1 knockout cells was performed to index these phenotypes by expressing cDNAs containing VUS. In parallel with the VUS validation system, a genetic analysis of samples from patients with mitochondrial disease was performed. The effect on gene expression in cases was verified by RNA-seq and proteome analysis. RESULTS: The functional validation of VUS identified novel variants causing loss of ECHS1 function. The VUS validation system also revealed the effect of the VUS in the compound heterozygous state and provided a new methodology for variant interpretation. Moreover, we performed multiomics analysis and identified a synonymous substitution p.P163= that results in splicing abnormality. The multiomics analysis complemented the diagnosis of some cases that could not be diagnosed by the VUS validation system. CONCLUSIONS: In summary, this study uncovered new ECHS1 cases based on VUS validation and omics analysis; these analyses are applicable to the functional evaluation of other genes associated with mitochondrial disease.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Fenotipo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Mutación/genética , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Pruebas Genéticas
3.
Nature ; 542(7640): 251-254, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28146471

RESUMEN

Peroxisomes function together with mitochondria in a number of essential biochemical pathways, from bile acid synthesis to fatty acid oxidation. Peroxisomes grow and divide from pre-existing organelles, but can also emerge de novo in the cell. The physiological regulation of de novo peroxisome biogenesis remains unclear, and it is thought that peroxisomes emerge from the endoplasmic reticulum in both mammalian and yeast cells. However, in contrast to the yeast system, a number of integral peroxisomal membrane proteins are imported into mitochondria in mammalian cells in the absence of peroxisomes, including Pex3, Pex12, Pex13, Pex14, Pex26, PMP34 and ALDP. Overall, the mitochondrial localization of peroxisomal membrane proteins in mammalian cells has largely been considered a mis-targeting artefact in which de novo biogenesis occurs exclusively from endoplasmic reticulum-targeted peroxins. Here, in following the generation of new peroxisomes within human patient fibroblasts lacking peroxisomes, we show that the essential import receptors Pex3 and Pex14 target mitochondria, where they are selectively released into vesicular pre-peroxisomal structures. Maturation of pre-peroxisomes containing Pex3 and Pex14 requires fusion with endoplasmic reticulum-derived vesicles carrying Pex16, thereby providing full import competence. These findings demonstrate the hybrid nature of newly born peroxisomes, expanding their functional links to mitochondria.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Peroxisomas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Fibroblastos/citología , Humanos , Membranas Intracelulares/metabolismo , Lipoproteínas/deficiencia , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Peroxinas , Transporte de Proteínas , Proteínas Represoras/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/patología
4.
Mol Cell ; 59(6): 941-55, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26384664

RESUMEN

There has been evidence that mitochondrial fragmentation is required for apoptosis, but the molecular links between the machinery regulating dynamics and cell death have been controversial. Indeed, activated BAX and BAK can form functional channels in liposomes, bringing into question the contribution of mitochondrial dynamics in apoptosis. We now demonstrate that the activation of apoptosis triggers MAPL/MUL1-dependent SUMOylation of the fission GTPase Drp1, a process requisite for cytochrome c release. SUMOylated Drp1 functionally stabilizes ER/mitochondrial contact sites that act as hotspots for mitochondrial constriction, calcium flux, cristae remodeling, and cytochrome c release. The loss of MAPL does not alter the activation and assembly of BAX/BAK oligomers, indicating that MAPL is activated downstream of BAX/BAK. This work demonstrates how interorganellar contacts are dynamically regulated through active SUMOylation during apoptosis, creating a stabilized platform that signals cytochrome c release.


Asunto(s)
Apoptosis , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Señalización del Calcio , Cisteína Endopeptidasas/metabolismo , Dinaminas , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Mitocondrias/metabolismo , Péptido Hidrolasas/metabolismo , Transporte de Proteínas , Transducción de Señal , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
5.
J Inherit Metab Dis ; 45(6): 1143-1150, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36053827

RESUMEN

Pathogenic mitochondrial DNA heteroplasmy has mainly been assessed with bulk sequencing in individuals with mitochondrial disease. However, the distribution of heteroplasmy at the single-cell level in skin fibroblasts obtained from individuals, together with detailed clinical and biochemical information, remains to be investigated. We used the mitochondrial DNA single-cell assay for the transposase-accessible chromatin sequencing method. Skin fibroblasts were obtained from six individuals with mitochondrial disease and pathogenic m.3243A>G variants of differing severity. Different distributions of heteroplasmy at the single-cell level were identified in skin fibroblasts from all six individuals. Four individuals with different outcomes showed similar averaged heteroplasmy rates with normal mitochondrial respiratory chain enzyme activity, while the distribution of single-cell heteroplasmy patterns differed among the individuals. This study showed different heteroplasmy distribution patterns at the single-cell level in individuals with the m.3243A>G variant, who had a similar averaged heteroplasmy rates with normal mitochondrial respiratory chain enzyme activity. Whether such different heteroplasmy distribution patterns explain the different clinical outcomes should be assessed further in future studies. Measuring heteroplasmy of pathogenic mitochondrial DNA variants at the single-cell level could be important in individuals with mitochondrial disease.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Humanos , ADN Mitocondrial/genética , Heteroplasmia , Enfermedades Mitocondriales/genética , Mitocondrias/genética
6.
Mol Cell ; 51(1): 20-34, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23727017

RESUMEN

The mitochondrial ubiquitin ligase MITOL regulates mitochondrial dynamics. We report here that MITOL regulates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) domain formation through mitofusin2 (Mfn2). MITOL interacts with and ubiquitinates mitochondrial Mfn2, but not ER-associated Mfn2. Mutation analysis identified a specific interaction between MITOL C-terminal domain and Mfn2 HR1 domain. MITOL mediated lysine-63-linked polyubiquitin chain addition to Mfn2, but not its proteasomal degradation. MITOL knockdown inhibited Mfn2 complex formation and caused Mfn2 mislocalization and MAM dysfunction. Sucrose-density gradient centrifugation and blue native PAGE retardation assay demonstrated that MITOL is required for GTP-dependent Mfn2 oligomerization. MITOL knockdown reduced Mfn2 GTP binding, resulting in reduced GTP hydrolysis. We identified K192 in the GTPase domain of Mfn2 as a major ubiquitination site for MITOL. A K192R mutation blocked oligomerization even in the presence of GTP. Taken together, these results suggested that MITOL regulates ER tethering to mitochondria by activating Mfn2 via K192 ubiquitination.


Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Animales , GTP Fosfohidrolasas/análisis , Células HeLa , Humanos , Proteínas de la Membrana , Ratones , Proteínas Mitocondriales/análisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
7.
EMBO J ; 33(19): 2142-56, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25107473

RESUMEN

The last decade has been marked by tremendous progress in our understanding of the cell biology of mitochondria, with the identification of molecules and mechanisms that regulate their fusion, fission, motility, and the architectural transitions within the inner membrane. More importantly, the manipulation of these machineries in tissues has provided links between mitochondrial dynamics and physiology. Indeed, just as the proteins required for fusion and fission were identified, they were quickly linked to both rare and common human diseases. This highlighted the critical importance of this emerging field to medicine, with new hopes of finding drugable targets for numerous pathologies, from neurodegenerative diseases to inflammation and cancer. In the midst of these exciting new discoveries, an unexpected new aspect of mitochondrial cell biology has been uncovered; the generation of small vesicular carriers that transport mitochondrial proteins and lipids to other intracellular organelles. These mitochondrial-derived vesicles (MDVs) were first found to transport a mitochondrial outer membrane protein MAPL to a subpopulation of peroxisomes. However, other MDVs did not target peroxisomes and instead fused with the late endosome, or multivesicular body. The Parkinson's disease-associated proteins Vps35, Parkin, and PINK1 are involved in the biogenesis of a subset of these MDVs, linking this novel trafficking pathway to human disease. In this review, we outline what has been learned about the mechanisms and functional importance of MDV transport and speculate on the greater impact of these pathways in cellular physiology.


Asunto(s)
Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Orgánulos/fisiología , Vesículas Transportadoras/metabolismo , Animales , Humanos
8.
BMC Biol ; 15(1): 102, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089042

RESUMEN

Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.


Asunto(s)
Ciclo Celular , Metabolismo de los Lípidos , Biogénesis de Organelos , Transporte Biológico , Membrana Celular/metabolismo
9.
J Physiol ; 594(18): 5343-62, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27311616

RESUMEN

KEY POINTS: Mitochondrial-derived vesicle (MDV) formation occurs under baseline conditions and is rapidly upregulated in response to stress-inducing conditions in H9c2 cardiac myoblasts. In mice formation of MDVs occurs readily in the heart under normal healthy conditions while mitophagy is comparatively less prevalent. In response to acute stress induced by doxorubicin, mitochondrial dysfunction develops in the heart, triggering MDV formation and mitophagy. MDV formation is thus active in the cardiac system, where it probably constitutes a baseline housekeeping mechanism and a first line of defence against stress. ABSTRACT: The formation of mitochondrial-derived vesicles (MDVs), a process inherited from bacteria, has emerged as a potentially important mitochondrial quality control (QC) mechanism to selectively deliver damaged material to lysosomes for degradation. However, the existence of this mechanism in various cell types, and its physiological relevance, remains unknown. Our aim was to investigate the dynamics of MDV formation in the cardiac system in vitro and in vivo. Immunofluorescence in cell culture, quantitative transmission electron microscopy and electron tomography in vivo were used to study MDV production in the cardiac system. We show that in cardiac cells MDV production occurs at baseline, is commensurate with the dependence of cells on oxidative metabolism, is more frequent than mitophagy and is up-regulated on the time scale of minutes to hours in response to prototypical mitochondrial stressors (antimycin-A, xanthine/xanthine oxidase). We further show that MDV production is up-regulated together with mitophagy in response to doxorubicin-induced mitochondrial and cardiac dysfunction. Here we provide the first quantitative data demonstrating that MDV formation is a mitochondrial QC operating in the heart.


Asunto(s)
Corazón/fisiología , Mitocondrias Cardíacas/fisiología , Animales , Cardiotoxinas/farmacología , Línea Celular , ADN Mitocondrial/genética , Doxorrubicina/farmacología , Tomografía con Microscopio Electrónico , Corazón/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Enfermedades Mitocondriales/genética , Músculo Esquelético/diagnóstico por imagen , Miocardio/ultraestructura , Ratas
10.
J Biol Chem ; 286(39): 33879-89, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21832068

RESUMEN

We previously demonstrated that CRAM (CRMP5)-associated GTPase (CRAG), a short splicing variant of centaurin-γ3/AGAP3, facilitated degradation of expanded polyglutamine protein (polyQ) via the nuclear ubiquitin-proteasome pathway. Taking advantage of this feature, we also showed that lentivirus-mediated CRAG expression in the Purkinje cells of mice expressing polyQ resulted in clearance of the polyQ aggregates and rescue from ataxia. However, the molecular basis of the function of CRAG in cell survival against polyQ remains unclear. Here we report that CRAG, but not centaurin-γ3, induces transcriptional activation of c-Fos-dependent activator protein-1 (AP-1) via serum response factor (SRF). Mutation analysis indicated that the nuclear localization signal and both the N- and C-terminal regions of CRAG are critical for SRF-dependent c-Fos activation. CRAG knockdown by siRNA or expression of a dominant negative mutant of CRAG significantly attenuated the c-Fos activation triggered by either polyQ or the proteasome inhibitor MG132. Importantly, c-Fos expression partially rescued the enhanced cytotoxicity of CRAG knockdown in polyQ-expressing or MG132-treated cells. Finally, we suggest the possible involvement of CRAG in the sulfiredoxin-mediated antioxidant pathway via AP-1. Taken together, these results demonstrated that CRAG enhances the cell survival signal against the accumulation of unfolded proteins, including polyQ, through not only proteasome activation, but also the activation of c-Fos-dependent AP-1.


Asunto(s)
Ataxia/metabolismo , GTP Fosfohidrolasas/metabolismo , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células de Purkinje/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Ataxia/patología , Línea Celular Tumoral , Supervivencia Celular/genética , Activación Enzimática/genética , GTP Fosfohidrolasas/genética , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Ratones , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Células de Purkinje/patología , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transducción de Señal/genética , Factor de Transcripción AP-1/genética
11.
Genes Cells ; 16(2): 190-202, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21143562

RESUMEN

Seven human Sir2 homologues (sirtuin) have been identified to date. In this study, we clarified the mechanism of subcellular localization of two SIRT5 isoforms (i.e., SIRT5(iso1) and SIRT5(iso2) ) encoded by the human SIRT5 gene and whose C-termini slightly differ from each other. Although both isoforms contain cleavable mitochondrial targeting signals at their N-termini, we found that the cleaved SIRT5(iso2) was localized mainly in mitochondria, whereas the cleaved SIRT5(iso1) was localized in both mitochondria and cytoplasm. SIRT5ΔC, which is composed of only the common domain, showed the same mitochondrial localization as that of SIRT5(iso2) . These results suggest that the cytoplasmic localization of cleaved SIRT5(iso1) is dependent on the SIRT5(iso1) -specific C-terminus. Further analysis showed that the C-terminus of SIRT5(iso2) , which is rich in hydrophobic amino acid residues, functions as a mitochondrial membrane insertion signal. In addition, a de novo protein synthesis inhibition experiment using cycloheximide showed that the SIRT5(iso1) -specific C-terminus is necessary for maintaining the stability of SIRT5(iso1) . Moreover, genome sequence analysis from each organism examined indicated that SIRT5(iso2) is a primate-specific isoform. Taken together, these results indicate that human SIRT5 potentially controls various primate-specific functions via two isoforms with different intracellular localizations or stabilities.


Asunto(s)
Mitocondrias/enzimología , Sirtuinas/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Secuencia Conservada , Estabilidad de Enzimas , Células HEK293 , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Primates/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sirtuinas/genética
12.
iScience ; 25(7): 104582, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35789860

RESUMEN

Abnormal mitochondrial fragmentation by dynamin-related protein1 (Drp1) is associated with the progression of aging-associated heart diseases, including heart failure and myocardial infarction (MI). Here, we report a protective role of outer mitochondrial membrane (OMM)-localized E3 ubiquitin ligase MITOL/MARCH5 against cardiac senescence and MI, partly through Drp1 clearance by OMM-associated degradation (OMMAD). Persistent Drp1 accumulation in cardiomyocyte-specific MITOL conditional-knockout mice induced mitochondrial fragmentation and dysfunction, including reduced ATP production and increased ROS generation, ultimately leading to myocardial senescence and chronic heart failure. Furthermore, ischemic stress-induced acute downregulation of MITOL, which permitted mitochondrial accumulation of Drp1, resulted in mitochondrial fragmentation. Adeno-associated virus-mediated delivery of the MITOL gene to cardiomyocytes ameliorated cardiac dysfunction induced by MI. Our findings suggest that OMMAD activation by MITOL can be a therapeutic target for aging-associated heart diseases, including heart failure and MI.

13.
Int J Cardiol ; 341: 48-55, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34298071

RESUMEN

BACKGROUND: Cardiomyopathy is a risk factor for poor prognosis in pediatric patients with mitochondrial disease. However, other risk factors including genetic factors related to poor prognosis in mitochondrial disease has yet to be fully elucidated. METHODS AND RESULTS: Between January 2004 and September 2019, we enrolled 223 consecutive pediatric mitochondrial disease patients aged <18 years with a confirmed genetic diagnosis, including 114 with nuclear gene mutations, 89 patients with mitochondrial DNA (mtDNA) point mutations, 11 with mtDNA single large-scale deletions and 9 with chromosomal aberrations. Cardiomyopathy at baseline was observed in 46 patients (21%). Hazard ratios (HR) and 95% confidence intervals (CI) were calculated for all-cause mortality. Over a median follow-up of 36 months (12-77), there were 85 deaths (38%). The overall survival rate was significantly lower in patients with cardiomyopathy than in those without (p < 0.001, log-rank test). By multivariable analysis, left ventricular (LV) hypertrophy (HR = 4.6; 95% CI: 2.8-7.3), neonatal onset (HR = 2.9; 95% CI: 1.8-4.5) and chromosomal aberrations (HR = 2.9; 95% CI: 1.3-6.5) were independent predictors of all-cause mortality. Patients with LV hypertrophy with neonatal onset and/or chromosomal aberrations had higher mortality (100% in 21 patients) than those with LV hypertrophy alone (71% in 14 patients). CONCLUSION: In pediatric patients with mitochondrial disease, cardiomyopathy was common (21%) and was associated with increased mortality. LV hypertrophy, neonatal onset and chromosomal aberrations were independent predictors of all-cause mortality. Prognosis is particularly unfavorable if LV hypertrophy is combined with neonatal onset and/or chromosomal aberrations.


Asunto(s)
Cardiomiopatías , Enfermedades Mitocondriales , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Niño , Antecedentes Genéticos , Humanos , Hipertrofia Ventricular Izquierda , Recién Nacido , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/epidemiología , Enfermedades Mitocondriales/genética , Pronóstico , Factores de Riesgo
14.
J Cell Biol ; 219(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32227204

RESUMEN

Actomyosin-undercoated adherens junctions are critical for epithelial cell integrity and remodeling. Actomyosin associates with adherens junctions through αE-catenin complexed with ß-catenin and E-cadherin in vivo; however, in vitro biochemical studies in solution showed that αE-catenin complexed with ß-catenin binds to F-actin less efficiently than αE-catenin that is not complexed with ß-catenin. Although a "catch-bond model" partly explains this inconsistency, the mechanism for this inconsistency between the in vivo and in vitro results remains elusive. We herein demonstrate that afadin binds to αE-catenin complexed with ß-catenin and enhances its F-actin-binding activity in a novel mechanism, eventually inducing the proper actomyosin organization through αE-catenin complexed with ß-catenin and E-cadherin at adherens junctions.


Asunto(s)
Uniones Adherentes/genética , Cadherinas/genética , Proteínas de Microfilamentos/genética , beta Catenina/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestructura , Actinas/genética , Actomiosina/genética , Actomiosina/ultraestructura , Uniones Adherentes/ultraestructura , Animales , Humanos , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Unión Proteica/genética , Vinculina/genética , alfa Catenina/genética , alfa Catenina/ultraestructura
15.
Front Aging Neurosci ; 12: 609911, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33776740

RESUMEN

The hypothalamus plays a central role in homeostasis and aging. The hypothalamic arcuate nucleus (ARC) controls homeostasis of food intake and energy expenditure and retains adult neural stem cells (NSCs)/progenitor cells. Aging induces the loss of NSCs and the enhancement of inflammation, including the activation of glial cells in the ARC, but aging-associated alterations of the hypothalamic cells remain obscure. Here, we identified Sox2 and NeuN double-positive cells in a subpopulation of cells in the mouse ARC. These cells were reduced in number with aging, although NeuN-positive neuronal cells were unaltered in the total number. Diet-induced obesity mice fed with high-fat diet presented a similar hypothalamic alteration to aged mice. This study provides a new insight into aging-induced changes in the hypothalamus.

16.
Sci Rep ; 10(1): 3528, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103132

RESUMEN

MitoBlue is a fluorescent bisamidine that can be used to easily monitor the changes in mitochondrial degradation processes in different cells and cellular conditions. MitoBlue staining pattern is exceptional among mitochondrial dyes and recombinant fluorescent probes, allowing the dynamic study of mitochondrial recycling in a variety of situations in living cells. MitoBlue is a unique tool for the study of these processes that will allow the detailed characterization of communication between mitochondria and lysosomes.


Asunto(s)
2-Naftilamina/análogos & derivados , Amidinas/farmacología , Fibroblastos/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , 2-Naftilamina/farmacología , Animales , Embrión de Pollo , Fibroblastos/citología , Microscopía Fluorescente
17.
Cell Rep ; 30(4): 1129-1140.e5, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31995754

RESUMEN

Plasma membrane damage and cell death during processes such as necroptosis and apoptosis result from cues originating intracellularly. However, death caused by pore-forming agents, like bacterial toxins or complement, is due to direct external injury to the plasma membrane. To prevent death, the plasma membrane has an intrinsic repair ability. Here, we found that repair triggered by pore-forming agents involved TMEM16F, a calcium-activated lipid scramblase also mutated in Scott's syndrome. Upon pore formation and the subsequent influx of intracellular calcium, TMEM16F induced rapid "lipid scrambling" in the plasma membrane. This response was accompanied by membrane blebbing, extracellular vesicle release, preserved membrane integrity, and increased cell viability. TMEM16F-deficient mice exhibited compromised control of infection by Listeria monocytogenes associated with a greater sensitivity of neutrophils to the pore-forming Listeria toxin listeriolysin O (LLO). Thus, the lipid scramblase TMEM16F is critical for plasma membrane repair after injury by pore-forming agents.


Asunto(s)
Anoctaminas/metabolismo , Toxinas Bacterianas/toxicidad , Membrana Celular/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Choque Térmico/toxicidad , Proteínas Hemolisinas/toxicidad , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Timocitos/metabolismo , Animales , Anoctaminas/genética , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Membrana Celular/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidad , Hígado/citología , Hígado/metabolismo , Hígado/microbiología , Hígado/patología , Lípidos de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Rastreo , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/microbiología , Neutrófilos/patología , Proteínas de Transferencia de Fosfolípidos/genética , Bazo/citología , Bazo/metabolismo , Bazo/microbiología , Bazo/patología , Timocitos/efectos de los fármacos , Timocitos/ultraestructura
18.
Sci Rep ; 9(1): 18997, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831814

RESUMEN

Nectin-4 cell adhesion molecule and ErbB2 tyrosine kinase receptor are upregulated in many cancers, including breast cancer, and promote cancer cell proliferation and metastasis. Using human breast cancer cell lines T47D and SUM190-PT, in which both nectin-4 and ErbB2 were upregulated, we showed here that nectin-4 cis-interacted with ErB2 and enhanced its dimerization and activation, followed by the activation of the phosphoinositide 3-kinase-AKT signalling pathway for DNA synthesis. The third immunoglobulin-like domain of nectin-4 cis-interacted with domain IV of ErbB2. This region differs from the trastuzumab-interacting region but is included in the trastuzumab-resistant splice variants of ErbB2, p95-ErbB2 and ErbB2ΔEx16. Nectin-4 also cis-interacted with these trastuzumab-resistant splice variants and enhanced the activation of the phosphoinositide 3-kinase-AKT signalling pathway for DNA synthesis. In addition, nectin-4 enhanced the activation of the p95-ErbB2-induced JAK-STAT3 signalling pathway, but not the ErbB2- or ErbB2ΔEx16-induced JAK-STAT3 signalling pathway. These results indicate that nectin-4 cis-interacts with ErbB2 and its trastuzumab-resistant splice variants and enhances the activation of these receptors and downstream signalling pathways in a novel mechanism.


Asunto(s)
Empalme Alternativo , Moléculas de Adhesión Celular/metabolismo , ADN/biosíntesis , Resistencia a Antineoplásicos , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Empalme Alternativo/genética , Moléculas de Adhesión Celular/química , Resistencia a Antineoplásicos/efectos de los fármacos , Células HEK293 , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Life Sci Alliance ; 2(4)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31416892

RESUMEN

Mitochondrial abnormalities are associated with developmental disorders, although a causal relationship remains largely unknown. Here, we report that increased oxidative stress in neurons by deletion of mitochondrial ubiquitin ligase MITOL causes a potential neuroinflammation including aberrant astrogliosis and microglial activation, indicating that mitochondrial abnormalities might confer a risk for inflammatory diseases in brain such as psychiatric disorders. A role of MITOL in both mitochondrial dynamics and ER-mitochondria tethering prompted us to characterize three-dimensional structures of mitochondria in vivo. In MITOL-deficient neurons, we observed a significant reduction in the ER-mitochondria contact sites, which might lead to perturbation of phospholipids transfer, consequently reduce cardiolipin biogenesis. We also found that branched large mitochondria disappeared by deletion of MITOL. These morphological abnormalities of mitochondria resulted in enhanced oxidative stress in brain, which led to astrogliosis and microglial activation partly causing abnormal behavior. In conclusion, the reduced ER-mitochondria tethering and excessive mitochondrial fission may trigger neuroinflammation through oxidative stress.


Asunto(s)
Retículo Endoplásmico/metabolismo , Gliosis/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Cardiolipinas/metabolismo , Técnicas de Inactivación de Genes , Gliosis/metabolismo , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Estrés Oxidativo , Fosfolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA