Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38999106

RESUMEN

The results of this study showed that the compounds synthesized by the authors have significant potential due to their antibacterial and cytotoxic properties. The apparent antibacterial activity demonstrated by the compounds suggests that they are active antimicrobial agents against common microbial pathogens that cause various socially significant infectious diseases. Compound 6 showed pronounced antimicrobial activity against the Gram-positive test strain Staphylococcus aureus ATCC 6538, and compound 7 demonstrated pronounced antimicrobial activity against the Gram-negative test strain Escherichia coli ATCC 25922 (MIC = 6.3 µg/mL). This allowed us to consider these compounds to have great potential.


Asunto(s)
Antibacterianos , Escherichia coli , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Triazoles , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Humanos , Estructura Molecular , Relación Estructura-Actividad
2.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408682

RESUMEN

A new dicoumarin, jusan coumarin, (1), has been isolated from Artemisia glauca aerial parts. The chemical structure of jusan coumarin was estimated, by 1D, 2D NMR as well as HR-Ms spectroscopic methods, to be 7-hydroxy-6-methoxy-3-[(2-oxo-2H-chromen-6-yl)oxy]-2H-chromen-2-one. As the first time to be introduced in nature, its potential against SARS-CoV-2 has been estimated using various in silico methods. Molecular similarity and fingerprints experiments have been utilized for 1 against nine co-crystallized ligands of COVID-19 vital proteins. The results declared a great similarity between Jusan Coumarin and X77, the ligand of COVID-19 main protease (PDB ID: 6W63), Mpro. To authenticate the obtained outputs, a DFT experiment was achieved to confirm the similarity of X77 and 1. Consequently, 1 was docked against Mpro. The results clarified that 1 bonded in a correct way inside Mpro active site, with a binding energy of -18.45 kcal/mol. Furthermore, the ADMET and toxicity profiles of 1 were evaluated and showed the safety of 1 and its likeness to be a drug. Finally, to confirm the binding and understand the thermodynamic characters between 1 and Mpro, several molecular dynamics (MD) simulations studies have been administered. Additionally, the known coumarin derivative, 7-isopentenyloxycoumarin (2), has been isolated as well as ß-sitosterol (3).


Asunto(s)
Artemisia , Proteasas 3C de Coronavirus , Cumarinas , Inhibidores de Proteasas , SARS-CoV-2 , Artemisia/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Cumarinas/química , Cumarinas/farmacología , Dicumarol/química , Dicumarol/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología
3.
Molecules ; 27(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35209006

RESUMEN

Two rare 2-phenoxychromone derivatives, 6-demethoxy-4`-O-capillarsine (1) and tenuflorin C (2), were isolated from the areal parts of Artemisia commutata and A. glauca, respectively, for the first time. Being rare in nature, the inhibition potentialities of 1 and 2 against SARS-CoV-2 was investigated using multistage in silico techniques. At first, molecular similarity and fingerprint studies were conducted for 1 and 2 against co-crystallized ligands of eight different COVID-19 enzymes. The carried-out studies indicated the similarity of 1 and 2 with TTT, the co-crystallized ligand of COVID-19 Papain-Like Protease (PLP), (PDB ID: 3E9S). Therefore, molecular docking studies of 1 and 2 against the PLP were carried out and revealed correct binding inside the active site exhibiting binding energies of -18.86 and -18.37 Kcal/mol, respectively. Further, in silico ADMET in addition to toxicity evaluation of 1 and 2 against seven models indicated the general safety and the likeness of 1 and 2 to be drugs. Lastly, to authenticate the binding and to investigate the thermodynamic characters, molecular dynamics (MD) simulation studies were conducted on 1 and PLP.


Asunto(s)
Artemisia/química , COVID-19/enzimología , Cromonas/química , Proteasas Similares a la Papaína de Coronavirus , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/química , Humanos , Tratamiento Farmacológico de COVID-19
4.
Molecules ; 27(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35268738

RESUMEN

A new flavonoid, Jusanin, (1) has been isolated from the aerial parts of Artemisia commutata. The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone. Being new in nature, the inhibition potential of 1 has been estimated against SARS-CoV-2 using different in silico techniques. Firstly, molecular similarity and fingerprint studies have been conducted for Jusanin against co-crystallized ligands of eight different SARS-CoV-2 essential proteins. The studies indicated the similarity between 1 and X77, the co-crystallized ligand SARS-CoV-2 main protease (PDB ID: 6W63). To confirm the obtained results, a DFT study was carried out and indicated the similarity of (total energy, HOMO, LUMO, gap energy, and dipole moment) between 1 and X77. Accordingly, molecular docking studies of 1 against the target enzyme have been achieved and showed that 1 bonded correctly in the protein's active site with a binding energy of -19.54 Kcal/mol. Additionally, in silico ADMET in addition to the toxicity evaluation of Jusanin against seven models have been preceded and indicated the general safety and the likeness of Jusanin to be a drug. Finally, molecular dynamics simulation studies were applied to investigate the dynamic behavior of the Mpro-Jusanin complex and confirmed the correct binding at 100 ns. In addition to 1, three other metabolites have been isolated and identified to be сapillartemisin A (2), methyl-3-[S-hydroxyprenyl]-cumarate (3), and ß-sitosterol (4).


Asunto(s)
Artemisia , Proteasas 3C de Coronavirus , Flavonoides , SARS-CoV-2 , Animales , Humanos , Masculino , Ratas , Artemisia/química , Artemisia/metabolismo , Sitios de Unión , Dominio Catalítico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , COVID-19/patología , COVID-19/virología , Teoría Funcional de la Densidad , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/metabolismo , Flavonoides/farmacología , Dosificación Letal Mediana , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/enzimología , SARS-CoV-2/aislamiento & purificación , Piel/efectos de los fármacos , Piel/patología
5.
Molecules ; 23(4)2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29584708

RESUMEN

A library of bidentate diols, as well as tridentate triols and aminodiols, derived from (+)-sabinol, was synthesized in a stereoselective manner. Sabinol was transformed into allylic trichloroacetamide via Overman rearrangement of the corresponding trichloroacetimidate. After changing the protecting group to Boc, the enamine was subjected to stereospecific dihydroxylation with OsO4/NMO, resulting in the (1R,2R,3R,5R)-aminodiol diastereomer. The obtained primary aminodiol was transformed to a secondary analogue. The ring closure of the N-benzyl-substituted aminodiol with formaldehyde was investigated and regioselective formation of the spiro-oxazolidine ring was observed. Hydroboration or dihydroxylation of sabinol or its benzyl ether with OsO4/NMO resulted in the formation of sabinane-based diols and triols following a highly stereospecific reaction. Treatment of sabinol with m-CPBA afforded O-benzoyl triol as a diastereoisomer of the directly dihydroxylated product, instead of the expected epoxy alcohol. The resulting aminodiols, diol, and triols were applied as chiral catalysts in the reaction of diethylzinc and benzaldehyde from moderate to good selectivity.


Asunto(s)
Terpenos/síntesis química , Catálisis , Ligandos , Estructura Molecular , Estereoisomerismo , Terpenos/química
6.
Plants (Basel) ; 11(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35956550

RESUMEN

The phytochemical constituents of Calligonum tetrapterum Jaub. & Spach (Family Polygonaceae) were studied for the first time. The study resulted in the isolation of the rare flavonol glycoside, kaempferol 3-O-(6″-O-acetyl)-glucoside,(K3G-A). The potential inhibitive activity of K3G-A toward SARS-CoV-2 was investigated utilizing several in silico approaches. First, molecular fingerprints and structural similarity experiments were carried out for K3G-A against nine co-crystallized ligands of nine proteins of SARS-CoV-2 to reveal if there is a structural similarity with any of them. The conducted studies showed the high similarity of K3G-A and remdesivir, the co-crystallized ligand of SARS-CoV-2 RNA-dependent RNA polymerase (PDB ID: 7BV2), RdRp. To validate these findings, a DFT study was conducted and confirmed the proposed similarity on the electronic and orbital levels. The binding of K3G-A against RdRp was confirmed through molecular docking studies exhibiting a binding energy of -27.43 kcal/mol, which was higher than that of remdesivir. Moreover, the RdRp-K3G-A complex was subjected to several MD studies at 100 ns that authenticated the accurate mode of binding and the correct dynamic behavior. Finally, in silico ADMET and toxicity evaluation of K3G-A was conducted and denoted the safety and the drug-likeness of K3G-A. In addition to K3G-A, two other metabolites were isolated and identified to be kaempferol (K) and ß-sitosterol (ß-S).

7.
Nat Prod Res ; 31(12): 1464-1467, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27879146

RESUMEN

The composition of essential oils from leaves of Kazakhstan medicinal plants was analysed by GC-MS. The major compounds identified were 1,8-cineole (34.2%), myrcene (19.1%) and α-pinene (9.4%) in Ajania fruticulosa; 1,8-cineole (21.0%), ß-thujone (11.0%), camphor (8.5%), borneol (7.3%) and α-thujone (6.5%), in Achillea nobilis; camphor (47.3%), 1,8-cineole (23.9%), camphene (9.8%) and ß-thujone (6.0%) in Artemisia terrae-albae; 1,8-cineole(55.8%) and ß-pinene (6.2%) in Hyssopus ambiguus; α-thuyene(46.3%) and δ-cadinene(6.3%) in Juniperus sibirica; sabinene (64%) in Juniperus sabina; and α-pinene (51.5%), ß-phellandrene (11.2%) and δ-cadinene (6.3%) in Pinus sibirica. The essential oils did not show antifungal effect (MIC > 1.20 mg/mL) on Aspergillus carbonarius and Aspergillus niger, while the oils from A. nobilis, A. terrae-albae, H. ambiguus and J. sabina exhibited moderate and moderate to weak antimicrobial activities on Fusarium verticillioides (MIC = 0.60 mg/mL) and Fusarium graminearum (MIC = 0.60-1.20 mg/mL), respectively. A principal component analysis associated the antifungal activity (r2 > 0.80, p = 0.05) with the presence of borneol, camphor, camphene, 1,8-cineole,α- and ß-thujone, and of the oxygenated monoterpenes.


Asunto(s)
Antifúngicos/farmacología , Aceites Volátiles/farmacología , Plantas Medicinales/química , Kazajstán , Hojas de la Planta/química , Análisis de Componente Principal
8.
Nat Prod Res ; 30(17): 1950-5, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26404704

RESUMEN

Essential oils from aerial parts of Acantholippia deserticola, Artemisia proceriformis, Achillea micrantha and Libanotis buchtormensis were analysed by GC-MS. The major compounds identified were ß-thujone (66.5 ± 0.2%), and trans-sabinyl acetate (12.1 ± 0.2%) in A. deserticola; α-thujone (66.9 ± 0.4%) in A. proceriformis; 1,8-cineole (26.9 ± 0.5%), and camphor (17.7 ± 0.3%) in A. micrantha and cis-ß-ocimene (23.3 ± 0.3%), and trans-ß-ocimene (18.4 ± 0.2%) in L. buchtormensis. The oils showed a weak antimicrobial effect (MIC100 > 1.5 mg/ml) on most phytopathogens tested. A moderate antimicrobial activity (MIC100 between 0.5 and 1.5 mg/ml) was displayed by the oils of A. deserticola, A. micrantha and L. buchtormensis on Septoria tritici and by the oil of A. deserticola on Septoria glycine. The antimicrobial activity was associated to the contents of ß-thujone, trans-sabinyl acetate and trans-sabinol. Our results indicate that the tested essential oils have little inhibitory potency not suitable for use as plant protection products against the phytopathogens assayed.


Asunto(s)
Achillea/química , Antiinfecciosos/farmacología , Apiaceae/química , Artemisia/química , Aceites Volátiles/farmacología , Plantas Medicinales/química , Verbenaceae/química , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Aceites Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA