Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Mammary Gland Biol Neoplasia ; 29(1): 10, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722417

RESUMEN

Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events. We demonstrate that pSTAT3-positive events are multifocally clustered in a non-random and statistically significant fashion. Arginase-1 expressing cells, consistent with macrophages, exhibit distinct clustering within the periparturient mammary gland. These findings represent a new facet of mammary STAT3 biology, and point to the presence of mammary sub-microenvironments.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Factor de Transcripción STAT3 , Animales , Femenino , Bovinos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Células Epiteliales/metabolismo , Factor de Transcripción STAT3/metabolismo , Fosforilación , Embarazo , Parto/fisiología , Parto/metabolismo , Transducción de Señal
2.
New Phytol ; 240(3): 1305-1326, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37678361

RESUMEN

Pollen and tracheophyte spores are ubiquitous environmental indicators at local and global scales. Palynology is typically performed manually by microscopic analysis; a specialised and time-consuming task limited in taxonomical precision and sampling frequency, therefore restricting data quality used to inform climate change and pollen forecasting models. We build on the growing work using AI (artificial intelligence) for automated pollen classification to design a flexible network that can deal with the uncertainty of broad-scale environmental applications. We combined imaging flow cytometry with Guided Deep Learning to identify and accurately categorise pollen in environmental samples; here, pollen grains captured within c. 5500 Cal yr BP old lake sediments. Our network discriminates not only pollen included in training libraries to the species level but, depending on the sample, can classify previously unseen pollen to the likely phylogenetic order, family and even genus. Our approach offers valuable insights into the development of a widely transferable, rapid and accurate exploratory tool for pollen classification in 'real-world' environmental samples with improved accuracy over pure deep learning techniques. This work has the potential to revolutionise many aspects of palynology, allowing a more detailed spatial and temporal understanding of pollen in the environment with improved taxonomical resolution.


Asunto(s)
Aprendizaje Profundo , Inteligencia Artificial , Citometría de Flujo , Filogenia , Polen
3.
Mutagenesis ; 36(4): 311-320, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34111295

RESUMEN

Genetic toxicology is an essential component of compound safety assessment. In the face of a barrage of new compounds, higher throughput, less ethically divisive in vitro approaches capable of effective, human-relevant hazard identification and prioritisation are increasingly important. One such approach is the ToxTracker assay, which utilises murine stem cell lines equipped with green fluorescent protein (GFP)-reporter gene constructs that each inform on distinct aspects of cellular perturbation. Encouragingly, ToxTracker has shown improved sensitivity and specificity for the detection of known in vivo genotoxicants when compared to existing 'standard battery' in vitro tests. At the current time however, quantitative genotoxic potency correlations between ToxTracker and well-recognised in vivo tests are not yet available. Here we use dose-response data from the three DNA-damage-focused ToxTracker endpoints and from the in vivo micronucleus assay to carry out quantitative, genotoxic potency estimations for a range of aromatic amine and alkylating agents using the benchmark dose (BMD) approach. This strategy, using both the exponential and the Hill BMD model families, was found to produce robust, visually intuitive and similarly ordered genotoxic potency rankings for 17 compounds across the BSCL2-GFP, RTKN-GFP and BTG2-GFP ToxTracker endpoints. Eleven compounds were similarly assessed using data from the in vivo micronucleus assay. Cross-systems genotoxic potency correlations for the eight matched compounds demonstrated in vitro-in vivo correlation, albeit with marked scatter across compounds. No evidence for distinct differences in the sensitivity of the three ToxTracker endpoints was found. The presented analyses show that quantitative potency determinations from in vitro data enable more than just qualitative screening and hazard identification in genetic toxicology.


Asunto(s)
Daño del ADN , Pruebas de Mutagenicidad/métodos , Mutágenos/farmacología , Animales , Línea Celular , Genes Reporteros , Proteínas Fluorescentes Verdes , Ratones , Pruebas de Micronúcleos , Células Madre
4.
Arch Toxicol ; 95(9): 3101-3115, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245348

RESUMEN

The in vitro micronucleus assay is a globally significant method for DNA damage quantification used for regulatory compound safety testing in addition to inter-individual monitoring of environmental, lifestyle and occupational factors. However, it relies on time-consuming and user-subjective manual scoring. Here we show that imaging flow cytometry and deep learning image classification represents a capable platform for automated, inter-laboratory operation. Images were captured for the cytokinesis-block micronucleus (CBMN) assay across three laboratories using methyl methanesulphonate (1.25-5.0 µg/mL) and/or carbendazim (0.8-1.6 µg/mL) exposures to TK6 cells. Human-scored image sets were assembled and used to train and test the classification abilities of the "DeepFlow" neural network in both intra- and inter-laboratory contexts. Harnessing image diversity across laboratories yielded a network able to score unseen data from an entirely new laboratory without any user configuration. Image classification accuracies of 98%, 95%, 82% and 85% were achieved for 'mononucleates', 'binucleates', 'mononucleates with MN' and 'binucleates with MN', respectively. Successful classifications of 'trinucleates' (90%) and 'tetranucleates' (88%) in addition to 'other or unscorable' phenotypes (96%) were also achieved. Attempts to classify extremely rare, tri- and tetranucleated cells with micronuclei into their own categories were less successful (≤ 57%). Benchmark dose analyses of human or automatically scored micronucleus frequency data yielded quantitation of the same equipotent concentration regardless of scoring method. We conclude that this automated approach offers significant potential to broaden the practical utility of the CBMN method across industry, research and clinical domains. We share our strategy using openly-accessible frameworks.


Asunto(s)
Aprendizaje Profundo , Citometría de Flujo/métodos , Pruebas de Micronúcleos/métodos , Mutágenos/toxicidad , Automatización de Laboratorios , Bencimidazoles/administración & dosificación , Bencimidazoles/toxicidad , Carbamatos/administración & dosificación , Carbamatos/toxicidad , Línea Celular , Citocinesis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Metilmetanosulfonato/administración & dosificación , Metilmetanosulfonato/toxicidad , Mutágenos/administración & dosificación
5.
Cytometry A ; 97(3): 253-258, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31472007

RESUMEN

Eosinophils are granular leukocytes that play a role in mediating inflammatory responses linked to infection and allergic disease. Their activation during an immune response triggers spatial reorganization and eventual cargo release from intracellular granules. Understanding this process is important in diagnosing eosinophilic disorders and in assessing treatment efficacy; however, current protocols are limited to simply quantifying the number of eosinophils within a blood sample. Given that high optical absorption and scattering by the granular structure of these cells lead to marked image features, the physical changes that occur during activation should be trackable using image analysis. Here, we present a study in which imaging flow cytometry is used to quantify eosinophil activation state, based on the extraction of 85 distinct spatial features from dark-field images formed by light scattered orthogonally to the illuminating beam. We apply diffusion mapping, a time inference method that orders cells on a trajectory based on similar image features. Analysis of exogenous cell activation using eotaxin and endogenous activation in donor samples with elevated eosinophil counts shows that cell position along the diffusion-path line correlates with activation level (99% confidence level). Thus, the diffusion mapping provides an activation metric for each cell. Assessment of activated and control populations using both this spatial image-based, activation score and the integrated side-scatter intensity shows an improved Fisher discriminant ratio rd = 0.7 for the multivariate technique compared with an rd = 0.47 for the traditional whole-cell scatter metric. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Eosinófilos , Citometría de Flujo , Humanos , Recuento de Leucocitos
6.
Cytometry A ; 97(12): 1222-1237, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32445278

RESUMEN

Immunofluorescence microscopy is an essential tool for tissue-based research, yet data reporting is almost always qualitative. Quantification of images, at the per-cell level, enables "flow cytometry-type" analyses with intact locational data but achieving this is complex. Gastrointestinal tissue, for example, is highly diverse: from mixed-cell epithelial layers through to discrete lymphoid patches. Moreover, different species (e.g., rat, mouse, and humans) and tissue preparations (paraffin/frozen) are all commonly studied. Here, using field-relevant examples, we develop open, user-friendly methodology that can encompass these variables to provide quantitative tissue microscopy for the field. Antibody-independent cell labeling approaches, compatible across preparation types and species, were optimized. Per-cell data were extracted from routine confocal micrographs, with semantic machine learning employed to tackle densely packed lymphoid tissues. Data analysis was achieved by flow cytometry-type analyses alongside visualization and statistical definition of cell locations, interactions and established microenvironments. First, quantification of Escherichia coli passage into human small bowel tissue, following Ussing chamber incubations exemplified objective quantification of rare events in the context of lumen-tissue crosstalk. Second, in rat jejenum, precise histological context revealed distinct populations of intraepithelial lymphocytes between and directly below enterocytes enabling quantification in context of total epithelial cell numbers. Finally, mouse mononuclear phagocyte-T cell interactions, cell expression and significant spatial cell congregations were mapped to shed light on cell-cell communication in lymphoid Peyer's patch. Accessible, quantitative tissue microscopy provides a new window-of-insight to diverse questions in gastroenterology. It can also help combat some of the data reproducibility crisis associated with antibody technologies and over-reliance on qualitative microscopy. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Gastroenterología , Ganglios Linfáticos Agregados , Animales , Citometría de Flujo , Humanos , Ratones , Microscopía , Ratas , Reproducibilidad de los Resultados
7.
Cytometry A ; 97(4): 407-414, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32091180

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. While there are a number of well-recognized prognostic biomarkers at diagnosis, the most powerful independent prognostic factor is the response of the leukemia to induction chemotherapy (Campana and Pui: Blood 129 (2017) 1913-1918). Given the potential for machine learning to improve precision medicine, we tested its capacity to monitor disease in children undergoing ALL treatment. Diagnostic and on-treatment bone marrow samples were labeled with an ALL-discriminating antibody combination and analyzed by imaging flow cytometry. Ignoring the fluorescent markers and using only features extracted from bright-field and dark-field cell images, a deep learning model was able to identify ALL cells at an accuracy of >88%. This antibody-free, single cell method is cheap, quick, and could be adapted to a simple, laser-free cytometer to allow automated, point-of-care testing to detect slow early responders. Adaptation to other types of leukemia is feasible, which would revolutionize residual disease monitoring. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Leucemia , Aprendizaje Automático , Niño , Computadores , Citometría de Flujo , Humanos , Leucemia/diagnóstico , Neoplasia Residual
8.
Cytometry A ; 95(8): 836-842, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31081599

RESUMEN

White blood cell (WBC) differential counting is an established clinical routine to assess patient immune system status. Fluorescent markers and a flow cytometer are required for the current state-of-the-art method for determining WBC differential counts. However, this process requires several sample preparation steps and may adversely disturb the cells. We present a novel label-free approach using an imaging flow cytometer and machine learning algorithms, where live, unstained WBCs were classified. It achieved an average F1-score of 97% and two subtypes of WBCs, B and T lymphocytes, were distinguished from each other with an average F1-score of 78%, a task previously considered impossible for unlabeled samples. We provide an open-source workflow to carry out the procedure. We validated the WBC analysis with unstained samples from 85 donors. The presented method enables robust and highly accurate identification of WBCs, minimizing the disturbance to the cells and leaving marker channels free to answer other biological questions. It also opens the door to employing machine learning for liquid biopsy, here, using the rich information in cell morphology for a wide range of diagnostics of primary blood. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Citometría de Flujo/métodos , Leucocitos/citología , Aprendizaje Automático , Algoritmos , Humanos , Recuento de Leucocitos/métodos , Control de Calidad
9.
Mutagenesis ; 33(4): 283-289, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30204902

RESUMEN

Use of imaging flow cytometry to assess induced DNA damage via the cytokinesis block micronucleus (CBMN) assay has thus far been limited to radiation dosimetry in human lymphocytes using high end, 'ImageStream X' series imaging cytometers. Its potential to enumerate chemically induced DNA damage using in vitro cell lines remains unexplored. In the present manuscript, we investigate the more affordable FlowSight® imaging cytometry platform to assess in vitro micronucleus (MN) induction in the human lymphoblastoid TK6 and metabolically competent MCL-5 cells treated with Methyl Methane Sulfonate (MMS) (0-5 µg/ml), Carbendazim (0-1.6 µg/ml), and Benzo[a]Pyrene (B[a]P) (0-6.3 µg/ml) for a period of 1.5-2 cell-cycles. Cells were fixed, and nuclei and MN were stained using the fluorescent nuclear dye DRAQ5™. Image acquisition was carried out using a 20X objective on a FlowSight® imaging cytometer (Amnis, part of Merck Millipore) equipped with a 488 nm laser. Populations of ∼20000 brightfield cell images, alongside DRAQ5™ stained nuclei/MN were rapidly collected (≤10 min). Single, in-focus cells suitable for scoring were then isolated using the IDEAS® software. An overlay of the brightfield cell outlines and the DRAQ5 nuclear fluorescence was used to facilitate scoring of mono-, bi-, tri-, and tetra-nucleated cells with or without MN events and in context of the cytoplasmic boundary of the parent cell.To establish the potential of the FlowSight® platform, and to establish 'ground truth' cell classification for the supervised machine learning based scoring algorithm that represents the next stage of our project, the captured images were scored manually. Alongside, MN frequencies were also derived using the 'gold standard' light microscopy and manual scoring. A minimum of 3000 bi-nucleated cells were assessed using both approaches. Using the benchmark dose approach, the comparability of genotoxic potency estimations for the different compounds and cell lines was assessed across the two scoring platforms as highly similar. This study therefore provides essential proof-of-concept that FlowSight® imaging cytometry is capable of reproducing the results of 'gold standard' manual scoring by light microscopy. We conclude that, with the right automated scoring algorithm, imaging flow cytometry could revolutionise the reportability and scoring throughput of the CBMN assay.


Asunto(s)
Citometría de Flujo/métodos , Linfocitos/fisiología , Pruebas de Micronúcleos/métodos , Bencimidazoles/farmacología , Carbamatos/farmacología , Línea Celular , Núcleo Celular/fisiología , Citocinesis/fisiología , Daño del ADN/fisiología , Humanos , Metilmetanosulfonato/farmacología , Mutágenos/farmacología
10.
Nat Methods ; 11(11): 1177-81, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25218182

RESUMEN

For phenotypic behavior to be understood in the context of cell lineage and local environment, properties of individual cells must be measured relative to population-wide traits. However, the inability to accurately identify, track and measure thousands of single cells via high-throughput microscopy has impeded dynamic studies of cell populations. We demonstrate unique labeling of cells, driven by the heterogeneous random uptake of fluorescent nanoparticles of different emission colors. By sequentially exposing a cell population to different particles, we generated a large number of unique digital codes, which corresponded to the cell-specific number of nanoparticle-loaded vesicles and were visible within a given fluorescence channel. When three colors are used, the assay can self-generate over 17,000 individual codes identifiable using a typical fluorescence microscope. The color-codes provided immediate visualization of cell identity and allowed us to track human cells with a success rate of 78% across image frames separated by 8 h.


Asunto(s)
Rastreo Celular/métodos , Colorantes Fluorescentes , Puntos Cuánticos , Línea Celular , Humanos , Microscopía Fluorescente
11.
J Microsc ; 261(2): 167-76, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25762522

RESUMEN

Semiconductor quantum dot nanoparticles are in demand as optical biomarkers yet the cellular uptake process is not fully understood; quantification of numbers and the fate of internalized particles are still to be achieved. We have focussed on the characterization of cellular uptake of quantum dots using a combination of analytical electron microscopies because of the spatial resolution available to examine uptake at the nanoparticle level, using both imaging to locate particles and spectroscopy to confirm identity. In this study, commercially available quantum dots, CdSe/ZnS core/shell particles coated in peptides to target cellular uptake by endocytosis, have been investigated in terms of the agglomeration state in typical cell culture media, the traverse of particle agglomerates across U-2 OS cell membranes during endocytosis, the merging of endosomal vesicles during incubation of cells and in the correlation of imaging flow cytometry and transmission electron microscopy to measure the final nanoparticle dose internalized by the U-2 OS cells. We show that a combination of analytical transmission electron microscopy and serial block face scanning electron microscopy can provide a comprehensive description of the internalization of an initial exposure dose of nanoparticles by an endocytically active cell population and how the internalized, membrane bound nanoparticle load is processed by the cells. We present a stochastic model of an endosome merging process and show that this provides a data-driven modelling framework for the prediction of cellular uptake of engineered nanoparticles in general.


Asunto(s)
Endocitosis , Nanopartículas/análisis , Puntos Cuánticos/análisis , Línea Celular , Endosomas/ultraestructura , Citometría de Flujo , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Nanopartículas/química , Nanopartículas/ultraestructura , Puntos Cuánticos/ultraestructura , Semiconductores
12.
Nanomedicine ; 12(7): 1843-1851, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27068156

RESUMEN

Cross-system comparisons of drug delivery vectors are essential to ensure optimal design. An in-vitro experimental protocol is presented that separates the role of the delivery vector from that of its cargo in determining the cell response, thus allowing quantitative comparison of different systems. The technique is validated through benchmarking of the dose-response of human fibroblast cells exposed to the cationic molecule, polyethylene imine (PEI); delivered as a free molecule and as a cargo on the surface of CdSe nanoparticles and Silica microparticles. The exposure metrics are converted to a delivered dose with the transport properties of the different scale systems characterized by a delivery time, τ. The benchmarking highlights an agglomeration of the free PEI molecules into micron sized clusters and identifies the metric determining cell death as the total number of PEI molecules presented to cells, determined by the delivery vector dose and the surface density of the cargo.


Asunto(s)
Benchmarking , Sistemas de Liberación de Medicamentos , Nanopartículas , Fibroblastos , Vectores Genéticos , Humanos , Polietileneimina , Dióxido de Silicio
13.
Cytometry A ; 87(5): 385-92, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25572722

RESUMEN

A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 µm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture.


Asunto(s)
Proliferación Celular/genética , Rastreo Celular/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Línea Celular , Humanos , Mitosis , Análisis de la Célula Individual , Programas Informáticos
14.
Nanotechnology ; 26(15): 155101, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25797791

RESUMEN

The application of nanoparticles (NPs) within medicine is of great interest; their innate physicochemical characteristics provide the potential to enhance current technology, diagnostics and therapeutics. Recently a number of NP-based diagnostic and therapeutic agents have been developed for treatment of various diseases, where judicious surface functionalization is exploited to increase efficacy of administered therapeutic dose. However, quantification of heterogeneity associated with absolute dose of a nanotherapeutic (NP number), how this is trafficked across biological barriers has proven difficult to achieve. The main issue being the quantitative assessment of NP number at the spatial scale of the individual NP, data which is essential for the continued growth and development of the next generation of nanotherapeutics. Recent advances in sample preparation and the imaging fidelity of transmission electron microscopy (TEM) platforms provide information at the required spatial scale, where individual NPs can be individually identified. High spatial resolution however reduces the sample frequency and as a result dynamic biological features or processes become opaque. However, the combination of TEM data with appropriate probabilistic models provide a means to extract biophysical information that imaging alone cannot. Previously, we demonstrated that limited cell sampling via TEM can be statistically coupled to large population flow cytometry measurements to quantify exact NP dose. Here we extended this concept to link TEM measurements of NP agglomerates in cell culture media to that encapsulated within vesicles in human osteosarcoma cells. By construction and validation of a data-driven transfer function, we are able to investigate the dynamic properties of NP agglomeration through endocytosis. In particular, we statistically predict how NP agglomerates may traverse a biological barrier, detailing inter-agglomerate merging events providing the basis for predictive modelling of nanopharmacology.


Asunto(s)
Medios de Cultivo/química , Nanomedicina/métodos , Nanopartículas/química , Nanotecnología/métodos , Transporte Biológico , Línea Celular Tumoral , Simulación por Computador , Sistemas de Liberación de Medicamentos , Endocitosis , Endosomas/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Modelos Estadísticos , Osteosarcoma/metabolismo , Probabilidad , Puntos Cuánticos
15.
Cytometry A ; 83(12): 1085-95, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24166880

RESUMEN

Labeling nonquiescent cells with carboxyfluorescein succinimidyl ester (CFSE)-like dyes gives rise to a population width exceeding the threshold for resolving division peaks by flow cytometry. Width is a function of biological heterogeneity plus extrinsic and intrinsic error sources associated with the measurement process. Optimal cytometer performance minimizes extrinsic error, but reducing intrinsic error to the point of facilitating peak resolution requires careful fluorochrome selection and fluorescent cell sorting. In this study, we labeled the Jurkat and A549 cell lines with CFSE, CellTraceViolet (CTV), and eFluor 670 proliferation dye (EPD) to test if we could resolve division peaks in culture after reducing the labeled input widths by cell sorting. Reanalysis of the sorted populations to ascertain the level of reduction achieved always led to widths exceeding the gated limits due to the contribution of errors. Measuring detector-specific extrinsic error by sorting uniform fluorescent particles with similar spectral properties to the tracking dyes allowed us to determine the intrinsic error for each dye and cell type using a simple mathematical approach. We found that cell intrinsic error ultimately dictated whether we could resolve division peaks, and that as this increased, the required sort gate width to resolve any division peaks decreased to the point whereby issues with yield made A549 unsuitable for this approach. Finally, attempts to improve yields by setting two concurrent sort gates on the fluorescence distribution enriched for cells in different stages of the cell cycle that had nonequivalent proliferative properties in culture and thus should be practiced with caution.


Asunto(s)
Proliferación Celular , Citometría de Flujo/métodos , Colorantes Fluorescentes/química , Técnica de Dilución de Colorante , Estudios de Evaluación como Asunto , Fluoresceínas/química , Humanos , Células Jurkat , Reproducibilidad de los Resultados , Coloración y Etiquetado , Succinimidas/química
16.
Cell Rep Methods ; 3(2): 100398, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36936072

RESUMEN

Unlocking and quantifying fundamental biological processes through tissue microscopy requires accurate, in situ segmentation of all cells imaged. Currently, achieving this is complex and requires exogenous fluorescent labels that occupy significant spectral bandwidth, increasing the duration and complexity of imaging experiments while limiting the number of channels remaining to address the study's objectives. We demonstrate that the excitation light reflected during routine confocal microscopy contains sufficient information to achieve accurate, label-free cell segmentation in 2D and 3D. This is achieved using a simple convolutional neural network trained to predict the probability that reflected light pixels belong to either nucleus, cytoskeleton, or background classifications. We demonstrate the approach across diverse lymphoid tissues and provide video tutorials demonstrating deployment in Python and MATLAB or via standalone software for Windows.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos , Redes Neurales de la Computación , Programas Informáticos
17.
Small ; 8(20): 3151-60, 2012 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-22930522

RESUMEN

New insights into the intra- and intercellular trafficking of drug delivery particles challenges the dogma of particles as static intracellular depots for sustained drug release. Recent discoveries in the cell-to-cell transfer of cellular constituents, including proteins, organelles, and microparticles sheds light on new ways to propagate signals and therapeutics. While beneficial for the dispersion of therapeutics at sites of pathologies, propagation of biological entities advancing disease states is less desirable. Mechanisms are presented for the transfer of porous silicon microparticles between cells. Direct cell-to-cell transfer of microparticles by means of membrane adhesion or using membrane extensions known as tunneling nanotubes is presented. Cellular relays, or shuttle cells, are also shown to mediate the transfer of microparticles between cells. These microparticle-transfer events appear to be stimulated by environmental cues, introducing a new paradigm of environmentally triggered propagation of cellular signals and rapid dispersion of particle-delivered therapeutics. The opportunity to use microparticles to study cellular transfer events and biological triggers that induce these events may aid in the discovery of therapeutics that limit the spread of disease.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Nanotubos/ultraestructura , Transporte Biológico/fisiología , Comunicación Celular/fisiología , Exocitosis , Citometría de Flujo , Células Endoteliales de la Vena Umbilical Humana/ultraestructura , Humanos , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
18.
Cell Rep Methods ; 2(11): 100348, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36452868

RESUMEN

Automated microscopy and computational image analysis has transformed cell biology, providing quantitative, spatially resolved information on cells and their constituent molecules from the sub-micron to the whole-organ scale. Here we explore the application of spatial statistics to the cellular relationships within tissue microscopy data and discuss how spatial statistics offers cytometry a powerful yet underused mathematical tool set for which the required data are readily captured using standard protocols and microscopy equipment. We also highlight the often-overlooked need to carefully consider the structural heterogeneity of tissues in terms of the applicability of different statistical measures and their accuracy and demonstrate how spatial analyses offer a great deal more than just basic quantification of biological variance. Ultimately, we highlight how statistical modeling can help reveal the hierarchical spatial processes that connect the properties of individual cells to the establishment of biological function.


Asunto(s)
Fenómenos Biológicos , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Modelos Estadísticos
19.
J Biomech ; 140: 111167, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35661536

RESUMEN

Functional principal components define modes of variation in time series, which represent characteristic movement patterns in biomechanical data. Their usefulness however depends on the prior choices made in data processing. Recent research showed that better curve alignment achieved with registration (dynamic time warping) reduces errors in linear models predicting jump height. However, the efficacy of registration in different preprocessing combinations, including time normalisation, padding and feature extraction, is largely unknown. A more comprehensive analysis is needed, given the potential value of registration to machine learning in biomechanics. We evaluated popular preprocessing methods combined with registration, creating 512 models based on ground reaction force data from 385 countermovement jumps. The models either predicted jump height or classified jumps into those performed with or without arm swing. Our results show that the classification models benefited from registration in various forms, particularly when landmarks were placed at critical points. The best classifier achieved a 5.5 percentage point improvement over the equivalent unregistered model. However, registration was detrimental to the jump height models, although this performance variable may be a special case given its direct relationship with impulse. Our meta-models revealed the relative contributions made by various preprocessing operations, highlighting that registration does not generalise so well to new data. Nonetheless, our analysis shows the potential for registration in further biomechanical applications, particularly in classification, when combined with the other appropriate preprocessing operations.


Asunto(s)
Fenómenos Mecánicos , Movimiento , Fenómenos Biomecánicos , Modelos Lineales , Factores de Tiempo
20.
PLoS One ; 17(2): e0263846, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35143555

RESUMEN

External peak power in the countermovement jump is frequently used to monitor athlete training. The gold standard method uses force platforms, but they are unsuitable for field-based testing. However, alternatives based on jump flight time or Newtonian methods applied to inertial sensor data have not been sufficiently accurate for athlete monitoring. Instead, we developed a machine learning model based on characteristic features (functional principal components) extracted from a single body-worn accelerometer. Data were collected from 69 male and female athletes at recreational, club or national levels, who performed 696 jumps in total. We considered vertical countermovement jumps (with and without arm swing), sensor anatomical locations, machine learning models and whether to use resultant or triaxial signals. Using a novel surrogate model optimisation procedure, we obtained the lowest errors with a support vector machine when using the resultant signal from a lower back sensor in jumps without arm swing. This model had a peak power RMSE of 2.3 W·kg-1 (5.1% of the mean), estimated using nested cross validation and supported by an independent holdout test (2.0 W·kg-1). This error is lower than in previous studies, although it is not yet sufficiently accurate for a field-based method. Our results demonstrate that functional data representations work well in machine learning by reducing model complexity in applications where signals are aligned in time. Our optimisation procedure also was shown to be robust can be used in wider applications with low-cost, noisy objective functions.


Asunto(s)
Acelerometría/instrumentación , Ejercicio Físico/fisiología , Atletas , Femenino , Humanos , Aprendizaje Automático , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA