Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 133899, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019361

RESUMEN

In the process of sepsis, excessive occurrence of pyroptosis, a form of programmed cell death acting as a defense mechanism against pathogens, can disrupt immune responses, thus leading to tissue damage and organ dysfunction. Chitosan oligosaccharide (COS), derived from chitosan degradation, has demonstrated diverse beneficial effects. However, its impact on sepsis-induced pyroptosis remains unexplored. In the present study, ATP/LPS was utilized to induce canonical-pyroptosis in THP-1 cells, while bacterial outer membrane vesicles (OMV) were employed to trigger non-canonical pyroptosis in RAW264.7 cells. Our results revealed a dose-dependent effect of COS on both types of pyroptosis. This was evidenced by a reduction in the expression of pro-inflammatory cytokines, as well as crucial regulatory proteins involved in pyroptosis. In addition, COS inhibited the cleavage of caspase-1 and GSDMD, and reduced ASC oligomerization. The underlying mechanism revealed that COS acts an antioxidant, reducing the release of pyroptosis-induced ROS and malondialdehyde (MDA) by upregulation the expression and promoting the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2), which led to an elevation of glutathione peroxidase 4 (GPX4) and superoxide dismutase (SOD). Notably, the actions of COS were completely reversed by the Nrf2 inhibitor. Consequently, COS intervention increased the survival rate of sepsis.

2.
ChemSusChem ; 14(20): 4593-4600, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34418314

RESUMEN

Nitrogen fixation to produce ammonia is a vital process since nitrogen is an essential element for the human body. Industrial nitrogen fixation mainly relies on the Haber-Bosch process. However, this process requires huge energy consumption and leads to pollution emission. In this study, the behaviors of intermediates in the nitrogen reduction reaction (NRR) are investigated for fifteen double-atom catalysts (DACs) through density functional theory calculations, revealing that under the synergistic effect of active sites on appropriate DACs, intermediates can be adsorbed through different configurations according to the activity improvement needs. VFe-N-C shows the best catalytic activity for electrochemical NRR with a limiting potential of -0.36 V vs. the reversible hydrogen electrode. The proposed synergistic effect of active sites on DACs for NRR could provide a new method for design of NRR catalysts.


Asunto(s)
Amoníaco/química , Fijación del Nitrógeno , Nitrógeno/química , Adsorción , Catálisis , Dominio Catalítico , Teoría Funcional de la Densidad , Técnicas Electroquímicas , Electrodos , Grafito/química , Hidrógeno/química , Conformación Molecular , Oxidación-Reducción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA