Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Tissue Res ; 348(3): 551-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22453555

RESUMEN

Estrogens and androgens play important roles in regulating the hormone-secreting functions of the pituitary gland by binding to their corresponding receptors. However, the expression of estrogen receptors (ERs) and the androgen receptor (AR) and the cell types containing ERs and AR in the anterior pituitary gland of adult chickens have not been well-studied. In this study, the distribution of ERα, AR and their corresponding cell types in the anterior pituitary gland of adult cockerels was detected by immunohistochemistry. The results showed that ERα was expressed in 68.63 % of luteinizing hormone (LH) producing cells but was not found in thyrotropes, lactotropes, somatotropes, corticotropes and folliculo-stellate (FS) cells. Pituitary hormone and AR double labeling results showed that about 37 % of LH cells and 50 % of thyroid-stimulating hormone (TSH) producing cells expressed AR, respectively. In contrast, less than 1 % of the somatotropes had an AR positive signal and AR signals were not detected in lactotropes, corticotropes or FS cells. In addition, there were only a few AR and ERα dual-labeled cells observed. These novel results provide evidence for a cell-specific distribution of ERα and AR in the anterior pituitary from adult cockerels by immunohistochemistry. The different distributions of ERα and AR in the LH cells suggest that the feedback-regulating mechanisms of estrogen and androgen on the pituitary hormones secretion are different. The functions and related mechanisms still need to be elucidated further.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Adenohipófisis/citología , Adenohipófisis/metabolismo , Receptores Androgénicos/metabolismo , Envejecimiento , Animales , Pollos , Inmunohistoquímica , Masculino , Especificidad de Órganos , Transporte de Proteínas , Coloración y Etiquetado
2.
Artículo en Inglés | MEDLINE | ID: mdl-32339757

RESUMEN

Previous studies have demonstrated that Zearalenone (ZEA) affects not only maternal reproductive function but also that of the offspring. However, the transgenerational toxic effects of ZEA on the spermatogonia of male F1 mice are not clear. The present study was thus designed to determine whether the fertility of male F1 mice was affected following exposure of F0 pregnant mice to ZEA. In present study, 32 pregnant female mice were divided into 4 groups and exposed to ZEA of 0, 2.5 and 5.0 mg/kg, respectively, and the testis development and reproductive performance of 96 male F1 mice were analyzed. The results demonstrated that the F0 pregnant mice treated with ZEA resulted in increased anogenital distances in the newborn male F1 mice. Moreover, ZEA caused abnormal vacuole structures and loose connections in the testes of male F1 offspring, compared with the controls. Further ultramicrostructural analysis showed that the mitochondria appeared to be vacuolated with ablated membranes and cristae, and this was accompanied by the presence of large lipid droplets in the spermatogonia. Further, the semen quality and sperm counts declined significantly, and increased malformation rates and decreased testosterone levels were observed in the male F1 offspring from experimental groups. Our results reveal the toxic effects of ZEA on F0 pregnant mice is transgenerational, and affects the fertility of male F1 mice by damaging the spermatogonial cells. This offers a new viewpoint of ZEA-induced reproductive toxicity in male animals and provides a new potential direction for the treatment and prevention of ZEA-induced cytotoxicity.


Asunto(s)
Fertilidad/efectos de los fármacos , Reproducción/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Testículo/efectos de los fármacos , Zearalenona/toxicidad , Animales , Estrógenos no Esteroides/toxicidad , Femenino , Masculino , Ratones , Embarazo , Análisis de Semen/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA