Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38789637

RESUMEN

Gallbladder cancer (GBC) is a common malignant cancer in the biliary system, which poses a serious threat to human health. It is urgent to explore ideal drugs for the treatment of GBC. Matrine is the main active ingredient of Sophora flavescentis, with a wide range of biological activities encompassing anti-inflammatory, antiviral, immunomodulatory, and anti-tumor. However, the underlying mechanism by which Matrine treats GBC is still unclear. The purpose of this study is to investigate the anti-tumor effects of Matrine on GBC in vivo and in vitro and to clarify the potential regulatory mechanisms. Here, we found that Matrine had a significant killing effect on GBC through CCK8 and flow cytometry, including arrest of cell cycle, inhibition of GBC cell, and induction of apoptosis. Further in vivo studies confirmed the inhibitory effect of Matrine on tumor growth in NOZ xenografted nude mouse. At the same time, Matrine also significantly suppressed the migration and invasion of GBC cells through scratch and Transwell experiments. In addition, by detecting the mRNA and protein levels of epithelial-mesenchymal transition (EMT) and matrix metalloproteinases, Matrine furtherly substantiated the inhibitory role on invasion and migration of GBC. From a mechanistic perspective, network pharmacology analysis suggests that the potential targets of Matrine in the treatment of GBC are enriched in the PI3K/AKT signaling pathway. Subsequently, Matrine effectively decreased the abundance of p-PI3K and p-AKT protein in vivo and in vitro. More importantly, PI3K activator (740 Y-P) antagonized the anti-tumor effect of Matrine, while PI3K inhibitor (LY294002) increased the sensitivity of Matrine for GBC. Based on the above findings, we conclude that Matrine inhibits the invasion and migration of GBC by regulating PI3K/AKT signaling pathway. Our results indicate the crucial role and regulatory mechanism of Matrine in suppressing the growth of GBC, which provides a theoretical basis for Matrine to be a candidate drug for the treatment and research of GBC.

2.
Phytomedicine ; 129: 155661, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677269

RESUMEN

BACKGROUND: Gallbladder cancer (GBC) poses a significant risk to human health. Its development is influenced by numerous factors, particularly the homeostasis of reactive oxygen species (ROS) within cells. This homeostasis is crucial for tumor cell survival, and abnormal regulation of ROS is associated with the occurrence and progression of many cancers. Dihydrotanshinone I (DHT I), a biologically effective ingredient isolated from Salvia miltiorrhiza, has exhibited cytotoxic properties against various tumor cells by inducing apoptosis. However, the precise molecular mechanisms by which dht I exerts its cytotoxic effects remain unclear. PURPOSE: To explore the anti-tumor impact of dht I on GBC and elucidate the potential molecular mechanisms. METHODS: The proliferation of GBC cells, NOZ and SGC-996, was assessed using various assays, including CCK-8 assay, colony formation assay and EdU staining. We also examined cell apoptosis, cell cycle progression, ROS levels, and alterations in mitochondrial membrane potential to delve into the intricate molecular mechanism. Quantitative PCR (qPCR), immunofluorescence staining, and Western blotting were performed to evaluate target gene expression at both the mRNA and protein levels. The correlation between nuclear factor erythroid 2-related factor 2 (Nrf2) and kelch-like ECH-associated protein 1 (Keap1) were examined using co-immunoprecipitation. Finally, the in vivo effect of dht I was investigated using a xenograft model of gallbladder cancer in mice. RESULTS: Our research findings indicated that dht I exerted cytotoxic effects on GBC cells, including inhibiting proliferation, disrupting mitochondrial membrane potential, inducing oxidative stress and apoptosis. Our in vivo studies substantiated the inhibition of dht I on tumor growth in xenograft nude mice. Mechanistically, dht I primarily targeted Nrf2 by promoting Keap1 mediated Nrf2 degradation and inhibiting protein kinase C (PKC) induced Nrf2 phosphorylation. This leads to the suppression of Nrf2 nuclear translocation and reduction of its target gene expression. Moreover, Nrf2 overexpression effectively counteracted the anti-tumor effects of dht I, while Nrf2 knockdown significantly enhanced the inhibitory effect of dht I on GBC. Meanwhile, PKC inhibitors and nuclear import inhibitors increased the sensitivity of GBC cells to dht I treatment. Conversely, Nrf2 activators, proteasome inhibitors, antioxidants and PKC activators all antagonized dht I induced apoptosis and ROS generation in NOZ and SGC-996 cells. CONCLUSION: Our findings indicated that dht I inhibited the growth of GBC cells by regulating the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation. These insights provide a strong rationale for further investigation of dht I as a potential therapeutic agent for GBC treatment.


Asunto(s)
Apoptosis , Proliferación Celular , Neoplasias de la Vesícula Biliar , Proteína 1 Asociada A ECH Tipo Kelch , Ratones Desnudos , Factor 2 Relacionado con NF-E2 , Fenantrenos , Especies Reactivas de Oxígeno , Transducción de Señal , Animales , Humanos , Ratones , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Furanos/farmacología , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C , Factor 2 Relacionado con NF-E2/metabolismo , Fenantrenos/farmacología , Fosforilación/efectos de los fármacos , Quinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Salvia miltiorrhiza/química , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Hepatogastroenterology ; 57(99-100): 409-13, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20698199

RESUMEN

BACKGROUND/AIMS: Evidence now strongly supports that early laparoscopic cholecystectomy (ELC) is the treatment of choice for acute gallbladder disease. However, the optimal time for managing acute gallbladder disease in elderly people is still controversial. The purpose of this study was to evaluate the outcome of ELC in patients aged 65 years old and older. METHODOLOGY: We performed a retrospective case study review of patients undergoing ELC in a single institution between January 2005 and December 2008. RESULTS: A total of 4048 patients were analyzed: 737 patients were older than 65 years old and 3311 younger. In total, 18% of the elderly patients and 3% of the younger patients had American Society of Anesthesiologists (ASA) score III and IV, respectively (p < 0.001). Co-morbidity rates were significantly higher in the elderly group (61.5% vs. 20.7%, p < 0.001). There was no difference in operative time, intraoperative complications, hospital stay and mortality between the two groups, except that the rate of conversion to open cholecystectomy (OC) and postoperative complications were significantly higher in elderly patients. CONCLUSION: Even though elderly patients are more likely to present with several co-morbidities in advanced stages, ELC for elderly patients with acute gallbladder disease is safe and effective, and should be regarded as the standard of care.


Asunto(s)
Colecistectomía Laparoscópica , Enfermedades de la Vesícula Biliar/cirugía , Enfermedad Aguda , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Colecistectomía , Colecistectomía Laparoscópica/efectos adversos , Femenino , Humanos , Complicaciones Intraoperatorias/epidemiología , Tiempo de Internación , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA