Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Trends Genet ; 40(6): 480-494, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658255

RESUMEN

Embryonic neurodevelopment, particularly neural progenitor differentiation into post-mitotic neurons, has been extensively studied. While the number and composition of post-mitotic neurons remain relatively constant from birth to adulthood, the brain undergoes significant postnatal maturation marked by major property changes frequently disrupted in neural diseases. This review first summarizes recent characterizations of the functional and molecular maturation of the postnatal nervous system. We then review regulatory mechanisms controlling the precise gene expression changes crucial for the intricate sequence of maturation events, highlighting experience-dependent versus cell-intrinsic genetic timer mechanisms. Despite significant advances in understanding of the gene-environmental regulation of postnatal neuronal maturation, many aspects remain unknown. The review concludes with our perspective on exciting future research directions in the next decade.


Asunto(s)
Interacción Gen-Ambiente , Neurogénesis , Neuronas , Humanos , Neuronas/citología , Neuronas/metabolismo , Animales , Neurogénesis/genética , Diferenciación Celular/genética , Mitosis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología
2.
Nature ; 600(7887): 93-99, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34759317

RESUMEN

In most animals, the majority of the nervous system is generated and assembled into neuronal circuits during embryonic development1. However, during juvenile stages, nervous systems still undergo extensive anatomical and functional changes to eventually form a fully mature nervous system by the adult stage2,3. The molecular changes in post-mitotic neurons across post-embryonic development and the genetic programs that control these temporal transitions are not well understood4,5. Here, using the model system Caenorhabditis elegans, we comprehensively characterized the distinct functional states (locomotor behaviour) and the corresponding distinct molecular states (transcriptome) of the post-mitotic nervous system across temporal transitions during post-embryonic development. We observed pervasive, neuron-type-specific changes in gene expression, many of which are controlled by the developmental upregulation of the conserved heterochronic microRNA LIN-4 and the subsequent promotion of a mature neuronal transcriptional program through the repression of its target, the transcription factor lin-14. The functional relevance of these molecular transitions are exemplified by a temporally regulated target gene of the LIN-14 transcription factor, nlp-45, a neuropeptide-encoding gene, which we find is required for several distinct temporal transitions in exploratory activity during post-embryonic development. Our study provides insights into regulatory strategies that control neuron-type-specific gene batteries to modulate distinct behavioural states across temporal, sexual and environmental dimensions of post-embryonic development.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Mitosis , Sistema Nervioso/crecimiento & desarrollo , Neuronas/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Conducta Exploratoria , Femenino , Regulación del Desarrollo de la Expresión Génica , Locomoción/genética , Masculino , MicroARNs/genética , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Neuropéptidos/genética , Proteínas Nucleares/genética , Factores de Tiempo , Transcriptoma
3.
Semin Cell Dev Biol ; 142: 67-80, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35688774

RESUMEN

After the generation, differentiation and integration into functional circuitry, post-mitotic neurons continue to change certain phenotypic properties throughout postnatal juvenile stages until an animal has reached a fully mature state in adulthood. We will discuss such changes in the context of the nervous system of the nematode C. elegans, focusing on recent descriptions of anatomical and molecular changes that accompany postembryonic maturation of neurons. We summarize the characterization of genetic timer mechanisms that control these temporal transitions or maturational changes, and discuss that many but not all of these transitions relate to sexual maturation of the animal. We describe how temporal, spatial and sex-determination pathways are intertwined to sculpt the emergence of cell-type specific maturation events. Finally, we lay out several unresolved questions that should be addressed to move the field forward, both in C. elegans and in vertebrates.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuronas/metabolismo , Diferenciación Celular
4.
Proc Natl Acad Sci U S A ; 119(45): e2210053119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322763

RESUMEN

Choreographic dendritic arborization takes place within a defined time frame, but the timing mechanism is currently not known. Here, we report that the precisely timed lin-4-lin-14 regulatory circuit triggers an initial dendritic growth activity, whereas the precisely timed lin-28-let-7-lin-41 regulatory circuit signals a subsequent developmental decline in dendritic growth ability, hence restricting dendritic arborization within a set time frame. Loss-of-function mutations in the lin-4 microRNA gene cause limited dendritic outgrowth, whereas loss-of-function mutations in its direct target, the lin-14 transcription factor gene, cause precocious and excessive outgrowth. In contrast, loss-of-function mutations in the let-7 microRNA gene prevent a developmental decline in dendritic growth ability, whereas loss-of-function mutations in its direct target, the lin-41 tripartite motif protein gene, cause further decline. lin-4 and let-7 regulatory circuits are expressed in the right place at the right time to set start and end times for dendritic arborization. Replacing the lin-4 upstream cis-regulatory sequence at the lin-4 locus with a late-onset let-7 upstream cis-regulatory sequence delays dendrite arborization, whereas replacing the let-7 upstream cis-regulatory sequence at the let-7 locus with an early-onset lin-4 upstream cis-regulatory sequence causes a precocious decline in dendritic growth ability. Our results indicate that the lin-4-lin-14 and the lin-28-let-7-lin-41 regulatory circuits control the timing of dendrite arborization through antagonistic regulation of the DMA-1 receptor level on dendrites. The LIN-14 transcription factor likely directly represses dma-1 gene expression through a transcriptional means, whereas the LIN-41 tripartite motif protein likely indirectly promotes dma-1 gene expression through a posttranscriptional means.


Asunto(s)
Proteínas de Caenorhabditis elegans , MicroARNs , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Nociceptores/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/genética , Plasticidad Neuronal , Proteínas Represoras/metabolismo , Proteínas de la Membrana/metabolismo
5.
PLoS Biol ; 16(1): e2004218, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29293491

RESUMEN

One goal of modern day neuroscience is the establishment of molecular maps that assign unique features to individual neuron types. Such maps provide important starting points for neuron classification, for functional analysis, and for developmental studies aimed at defining the molecular mechanisms of neuron identity acquisition and neuron identity diversification. In this resource paper, we describe a nervous system-wide map of the potential expression sites of 244 members of the largest gene family in the C. elegans genome, rhodopsin-like (class A) G-protein-coupled receptor (GPCR) chemoreceptors, using classic gfp reporter gene technology. We cover representatives of all sequence families of chemoreceptor GPCRs, some of which were previously entirely uncharacterized. Most reporters are expressed in a very restricted number of cells, often just in single cells. We assign GPCR reporter expression to all but two of the 37 sensory neuron classes of the sex-shared, core nervous system. Some sensory neurons express a very small number of receptors, while others, particularly nociceptive neurons, coexpress several dozen GPCR reporter genes. GPCR reporters are also expressed in a wide range of inter- and motorneurons, as well as non-neuronal cells, suggesting that GPCRs may constitute receptors not just for environmental signals, but also for internal cues. We observe only one notable, frequent association of coexpression patterns, namely in one nociceptive amphid (ASH) and two nociceptive phasmid sensory neurons (PHA, PHB). We identified GPCRs with sexually dimorphic expression and several GPCR reporters that are expressed in a left/right asymmetric manner. We identified a substantial degree of GPCR expression plasticity; particularly in the context of the environmentally-induced dauer diapause stage when one third of all tested GPCRs alter the cellular specificity of their expression within and outside the nervous system. Intriguingly, in a number of cases, the dauer-specific alterations of GPCR reporter expression in specific neuron classes are maintained during postdauer life and in some case new patterns are induced post-dauer, demonstrating that GPCR gene expression may serve as traits of life history. Taken together, our resource provides an entry point for functional studies and also offers a host of molecular markers for studying molecular patterning and plasticity of the nervous system.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Células Quimiorreceptoras/fisiología , Mapeo Cromosómico/métodos , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Reporteros , Fenotipo , Células Receptoras Sensoriales/fisiología , Transcriptoma/genética
6.
Nature ; 516(7529): 51-5, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25383518

RESUMEN

ß-catenin is a multi-functional protein that has an important role in the mature central nervous system; its dysfunction has been implicated in several neuropsychiatric disorders, including depression. Here we show that in mice ß-catenin mediates pro-resilient and anxiolytic effects in the nucleus accumbens, a key brain reward region, an effect mediated by D2-type medium spiny neurons. Using genome-wide ß-catenin enrichment mapping, we identify Dicer1-important in small RNA (for example, microRNA) biogenesis--as a ß-catenin target gene that mediates resilience. Small RNA profiling after excising ß-catenin from nucleus accumbens in the context of chronic stress reveals ß-catenin-dependent microRNA regulation associated with resilience. Together, these findings establish ß-catenin as a critical regulator in the development of behavioural resilience, activating a network that includes Dicer1 and downstream microRNAs. We thus present a foundation for the development of novel therapeutic targets to promote stress resilience.


Asunto(s)
ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica , MicroARNs/genética , Resiliencia Psicológica , Ribonucleasa III/genética , Estrés Fisiológico/genética , beta Catenina/metabolismo , Adaptación Fisiológica/genética , Animales , ARN Helicasas DEAD-box/metabolismo , Depresión/fisiopatología , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Neuronas/metabolismo , Ribonucleasa III/metabolismo , Transducción de Señal , beta Catenina/genética
7.
Proc Natl Acad Sci U S A ; 113(34): 9623-8, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27506785

RESUMEN

Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms-such as histone acetylation and methylation on Lys residues-have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans. Such PRMT6 down-regulation occurs selectively in NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2-MSNs), with opposite regulation occurring in D1-MSNs, and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we identified Src kinase signaling inhibitor 1 (Srcin1; also referred to as p140Cap) as a key gene target for reduced H3R2me2a binding, and found that consequent Srcin1 induction in the NAc decreases Src signaling, cocaine reward, and the motivation to self-administer cocaine. Taken together, these findings suggest that suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a down-regulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of treatments for cocaine addiction.


Asunto(s)
Proteínas Portadoras/genética , Trastornos Relacionados con Cocaína/metabolismo , Cocaína/administración & dosificación , Histonas/metabolismo , Núcleo Accumbens/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Proteínas Portadoras/metabolismo , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/patología , Histonas/genética , Humanos , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Núcleo Accumbens/patología , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
8.
J Neurosci ; 36(14): 3954-61, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27053203

RESUMEN

ATP-dependent chromatin remodeling proteins are being implicated increasingly in the regulation of complex behaviors, including models of several psychiatric disorders. Here, we demonstrate that Baz1b, an accessory subunit of the ISWI family of chromatin remodeling complexes, is upregulated in the nucleus accumbens (NAc), a key brain reward region, in both chronic cocaine-treated mice and mice that are resilient to chronic social defeat stress. In contrast, no regulation is seen in mice that are susceptible to this chronic stress. Viral-mediated overexpression of Baz1b, along with its associated subunit Smarca5, in mouse NAc is sufficient to potentiate both rewarding responses to cocaine, including cocaine self-administration, and resilience to chronic social defeat stress. However, despite these similar, proreward behavioral effects, genome-wide mapping of BAZ1B in NAc revealed mostly distinct subsets of genes regulated by these chromatin remodeling proteins after chronic exposure to either cocaine or social stress. Together, these findings suggest important roles for BAZ1B and its associated chromatin remodeling complexes in NAc in the regulation of reward behaviors to distinct emotional stimuli and highlight the stimulus-specific nature of the actions of these regulatory proteins. SIGNIFICANCE STATEMENT: We show that BAZ1B, a component of chromatin remodeling complexes, in the nucleus accumbens regulates reward-related behaviors in response to chronic exposure to both rewarding and aversive stimuli by regulating largely distinct subsets of genes.


Asunto(s)
Conducta Animal/fisiología , Emociones/fisiología , Núcleo Accumbens/fisiología , Recompensa , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Cocaína/farmacología , Epigénesis Genética/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas , Ratas Sprague-Dawley , Autoadministración , Medio Social , Estrés Psicológico
9.
Proc Natl Acad Sci U S A ; 111(5): 2005-10, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449909

RESUMEN

Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins. Here, we identify an essential role for PARP-1 in cocaine-induced molecular, neural, and behavioral plasticity. Repeated cocaine administration, including self-administration, increased global levels of PARP-1 and its mark PAR in mouse nucleus accumbens (NAc), a key brain reward region. Using PARP-1 inhibitors and viral-mediated gene transfer, we established that PARP-1 induction in NAc mediates enhanced behavioral responses to cocaine, including increased self-administration of the drug. Using chromatin immunoprecipitation sequencing, we demonstrated a global, genome-wide enrichment of PARP-1 in NAc of cocaine-exposed mice and identified several PARP-1 target genes that could contribute to the lasting effects of cocaine. Specifically, we identified sidekick-1--important for synaptic connections during development--as a critical PARP-1 target gene involved in cocaine's behavioral effects as well as in its ability to induce dendritic spines on NAc neurons. These findings establish the involvement of PARP-1 and PARylation in the long-term actions of cocaine.


Asunto(s)
Cocaína/farmacología , Poli Adenosina Difosfato Ribosa/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Inmunoprecipitación de Cromatina , Cocaína/administración & dosificación , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genoma/genética , Inmunoglobulina G/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/enzimología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Especificidad por Sustrato/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
10.
Proc Natl Acad Sci U S A ; 108(7): 3035-40, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21300862

RESUMEN

Repeated cocaine exposure induces persistent alterations in genome-wide transcriptional regulatory networks, chromatin remodeling activity and, ultimately, gene expression profiles in the brain's reward circuitry. Virtually all previous investigations have centered on drug-mediated effects occurring throughout active euchromatic regions of the genome, with very little known concerning the impact of cocaine exposure on the regulation and maintenance of heterochromatin in adult brain. Here, we report that cocaine dramatically and dynamically alters heterochromatic histone H3 lysine 9 trimethylation (H3K9me3) in the nucleus accumbens (NAc), a key brain reward region. Furthermore, we demonstrate that repeated cocaine exposure causes persistent decreases in heterochromatization in this brain region, suggesting a potential role for heterochromatic regulation in the long-term actions of cocaine. To identify precise genomic loci affected by these alterations, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-Seq) was performed on NAc. ChIP-Seq analyses confirmed the existence of the H3K9me3 mark mainly within intergenic regions of the genome and identified specific patterns of cocaine-induced H3K9me3 regulation at repetitive genomic sequences. Cocaine-mediated decreases in H3K9me3 enrichment at specific genomic repeats [e.g., long interspersed nuclear element (LINE)-1 repeats] were further confirmed by the increased expression of LINE-1 retrotransposon-associated repetitive elements in NAc. Such increases likely reflect global patterns of genomic destabilization in this brain region after repeated cocaine administration and open the door for future investigations into the epigenetic and genetic basis of drug addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Cocaína/toxicidad , Redes Reguladoras de Genes/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Heterocromatina/metabolismo , Histonas/metabolismo , Núcleo Accumbens/metabolismo , Análisis de Varianza , Animales , Secuencia de Bases , Western Blotting , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Heterocromatina/efectos de los fármacos , Inmunohistoquímica , Elementos de Nucleótido Esparcido Largo/genética , Lisina/metabolismo , Metilación/efectos de los fármacos , Ratones , Modelos Estadísticos , Datos de Secuencia Molecular , Núcleo Accumbens/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Recompensa , Análisis de Secuencia de ADN
11.
J Neurosci ; 32(48): 17454-64, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23197736

RESUMEN

Dysregulation of histone modifying enzymes has been associated with numerous psychiatric disorders. Alterations in G9a (Ehmt2), a histone methyltransferase that catalyzes the euchromatic dimethylation of histone H3 at lysine 9 (H3K9me2), has been implicated recently in mediating neural and behavioral plasticity in response to chronic cocaine administration. Here, we show that chronic morphine, like cocaine, decreases G9a expression, and global levels of H3K9me2, in mouse nucleus accumbens (NAc), a key brain reward region. In contrast, levels of other histone methyltransferases or demethylases, or of other methylated histone marks, were not affected in NAc by chronic morphine. Through viral-mediated gene transfer and conditional mutagenesis, we found that overexpression of G9a in NAc opposes morphine reward and locomotor sensitization and concomitantly promotes analgesic tolerance and naloxone-precipitated withdrawal, whereas downregulation of G9a in NAc enhances locomotor sensitization and delays the development of analgesic tolerance. We identified downstream targets of G9a by providing a comprehensive chromatin immunoprecipitation followed by massively parallel sequencing analysis of H3K9me2 distribution in NAc in the absence and presence of chronic morphine. These data provide novel insight into the epigenomic regulation of H3K9me2 by chronic morphine and suggest novel chromatin-based mechanisms through which morphine-induced addictive-like behaviors arise.


Asunto(s)
Conducta Animal/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Histonas/genética , Morfina/farmacología , Narcóticos/farmacología , Núcleo Accumbens/efectos de los fármacos , Animales , Metilación de ADN/efectos de los fármacos , Técnicas de Transferencia de Gen , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/efectos adversos , Actividad Motora/efectos de los fármacos , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Narcóticos/efectos adversos , Núcleo Accumbens/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo
12.
J Neurosci ; 32(30): 10267-72, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22836260

RESUMEN

ΔFosB, a Fosb gene product, is induced in nucleus accumbens (NAc) and caudate-putamen (CPu) by repeated exposure to drugs of abuse such as cocaine. This induction contributes to aberrant patterns of gene expression and behavioral abnormalities seen with repeated drug exposure. Here, we assessed whether a remote history of cocaine exposure in rats might alter inducibility of the Fosb gene elicited by subsequent drug exposure. We show that prior chronic cocaine administration, followed by extended withdrawal, increases inducibility of Fosb in NAc, as evidenced by greater acute induction of ΔFosB mRNA and faster accumulation of ΔFosB protein after repeated cocaine reexposure. No such primed Fosb induction was observed in CPu; in fact, subsequent acute induction of ΔFosB mRNA was suppressed in CPu. These abnormal patterns of Fosb expression are associated with chromatin modifications at the Fosb gene promoter. Prior chronic cocaine administration induces a long-lasting increase in RNA polymerase II (Pol II) binding at the Fosb promoter in NAc only, suggesting that Pol II "stalling" primes Fosb for induction in this region upon reexposure to cocaine. A cocaine challenge then triggers the release of Pol II from the gene promoter, allowing for more rapid Fosb transcription. A cocaine challenge also decreases repressive histone modifications at the Fosb promoter in NAc, but increases such repressive marks and decreases activating marks in CPu. These results provide new insight into the chromatin dynamics at the Fosb promoter and reveal a novel mechanism for primed Fosb induction in NAc upon reexposure to cocaine.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Epigénesis Genética/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/genética , Animales , Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Expresión Génica/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley
13.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-38021170

RESUMEN

Recent single-cell transcriptome analysis has revealed a tremendous breadth and specificity of neuropeptide-encoding gene expression in the nervous system of C. elegans. To analyze the dynamics of neuropeptide gene expression, as well as to dissect the regulatory mechanism by which their expression is controlled, reporter genes remain an important tool. Using CRISPR/Cas9 genome-engineering, we generate here reporter alleles for 6 different neuropeptide encoding genes (3 flp genes, 1 nlp and 2 insulin genes). We find that different reporter cassettes result in different levels of reporter expression and recommend usage of an SL2::GFP::H2B or GFP::H2B::SL2 cassette.

14.
Curr Biol ; 33(6): R217-R218, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36977380

RESUMEN

Heterochrony is a foundational concept in animal development and evolution, first introduced by Ernst Haeckel in 1875 and later popularized by Stephen J. Gould1. A molecular understanding of heterochrony was first established by genetic mutant analysis in the nematode C. elegans, revealing a genetic pathway that controls the proper timing of cellular patterning events executed during distinct postembryonic juvenile and adult stages2. This genetic pathway is composed of a complex temporal cascade of multiple regulatory factors, including the first-ever discovered miRNA, lin-4, and its target gene, lin-14, which encodes a nuclear, DNA-binding protein2,3,4. While all core members of the pathway have homologs based on primary sequences in other organisms, homologs for LIN-14 have never been identified by sequence homology. We report that the AlphaFold-predicted structure of the LIN-14 DNA binding domain is homologous to the BEN domain, found in a family of DNA binding proteins previously thought to have no nematode homologs5. We confirmed this prediction through targeted mutations of predicted DNA-contacting residues, which disrupt in vitro DNA binding and in vivo function. Our findings shed new light on potential mechanisms of LIN-14 function and suggest that BEN domain-containing proteins may have a conserved role in developmental timing.


Asunto(s)
Proteínas de Caenorhabditis elegans , Factores de Transcripción , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/metabolismo
15.
Neuron ; 111(22): 3570-3589.e5, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37935195

RESUMEN

Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.


Asunto(s)
Conectoma , Animales , Caenorhabditis elegans/fisiología , Neuronas/fisiología , Expresión Génica , Sinapsis
16.
Elife ; 102021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34165428

RESUMEN

Many neuronal identity regulators are expressed in distinct populations of cells in the nervous system, but their function is often analyzed only in specific isolated cellular contexts, thereby potentially leaving overarching themes in gene function undiscovered. We show here that the Caenorhabditis elegans Prop1-like homeobox gene unc-42 is expressed in 15 distinct sensory, inter- and motor neuron classes throughout the entire C. elegans nervous system. Strikingly, all 15 neuron classes expressing unc-42 are synaptically interconnected, prompting us to investigate whether unc-42 controls the functional properties of this circuit and perhaps also the assembly of these neurons into functional circuitry. We found that unc-42 defines the routes of communication between these interconnected neurons by controlling the expression of neurotransmitter pathway genes, neurotransmitter receptors, neuropeptides, and neuropeptide receptors. Anatomical analysis of unc-42 mutant animals reveals defects in axon pathfinding and synaptic connectivity, paralleled by expression defects of molecules involved in axon pathfinding, cell-cell recognition, and synaptic connectivity. We conclude that unc-42 establishes functional circuitry by acting as a terminal selector of functionally connected neuron types. We identify a number of additional transcription factors that are also expressed in synaptically connected neurons and propose that terminal selectors may also function as 'circuit organizer transcription factors' to control the assembly of functional circuitry throughout the nervous system. We hypothesize that such organizational properties of transcription factors may be reflective of not only ontogenetic, but perhaps also phylogenetic trajectories of neuronal circuit establishment.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriología , Proteínas de Homeodominio/genética , Interneuronas/fisiología , Neuronas Motoras/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero/embriología , Proteínas de Homeodominio/metabolismo , Sinapsis/metabolismo
17.
Curr Biol ; 30(18): 3604-3616.e3, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32707064

RESUMEN

Sexual differentiation is controlled by diverse master regulatory factors across the animal kingdom. The transcription factor TRA-1 is the master regulator of somatic sexual differentiation in the nematode C. elegans, where it was reported to be expressed sex-specifically in the non-gonadal soma of hermaphrodites. Using a gfp-tagged allele of tra-1, we reveal unanticipated dynamics of TRA-1 protein expression in five dimensions: space, time, sex, environment, and subcellular localization. We show temporal regulation of TRA-1 protein accumulation in somatic tissues with different onsets of expression in different tissue types, indicating that sexual identity is not uniformly imposed. In hermaphrodites, neuronal expression is initially highly restricted and then increases variably between individuals during larval development until reaching panneuronal expression in the fourth larval stage. Unexpectedly, TRA-1 also accumulates in a subset of sex-shared neurons in the male. Additionally, a food signal is required to turn on TRA-1 expression in the intestine, and environmental stressors shut off TRA-1 expression in the entire non-gonadal soma, suggesting that somatic sexual differentiation may be affected by external conditions. We show that, in contrast to the protein degradation mechanisms that control TRA-1 accumulation in the adult, the temporal, sexual, and spatial specificities of TRA-1 accumulation during development are regulated transcriptionally. A nuclear hormone receptor, daf-12, previously implicated in developmental timing in C. elegans, contributes to temporal accumulation of TRA-1 in the nervous system. Our studies reveal a mosaic and dynamic nature of sexual identity acquisition and uncover hormonal control mechanisms for sexual differentiation of the brain.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Receptores Citoplasmáticos y Nucleares/metabolismo , Diferenciación Sexual , Análisis Espacio-Temporal , Factores de Transcripción/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Receptores Citoplasmáticos y Nucleares/genética , Factores de Transcripción/genética
18.
Neuropsychopharmacology ; 44(8): 1370-1376, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30587852

RESUMEN

Comorbid neuropsychiatric disorders such as addiction and anxiety could involve common underlying mechanisms. One potential mechanism involves epigenetic regulation of histone 3 dimethylation at lysine 9 residues (H3K9me2) by the histone dimethyltransferase G9a. Here we provide evidence that local AAV-RNAi-mediated knockdown of G9a expression in nucleus accumbens shell (NAcSh) of male rats reduces both addictive-related and anxiety-related behaviors. Specifically, G9a knockdown reduces sensitivity to low dose cocaine reinforcement when cocaine is freely available (fixed ratio schedule). Similarly, G9a knockdown reduces motivation for cocaine under higher effort demands (progressive ratio schedule). Following several weeks of forced abstinence, G9a knockdown attenuates extinction responding and reinstatement triggered by either cocaine-priming injections or footshock stress. This decrease in addictive behavior is associated with a long-term reduction in anxiety-like behavior as measured by the elevated plus maze (EPM). G9a knockdown also reduces basal anxiety-like behavior in EPM and marble burying tests in drug-naïve rats. These results complement our previous work showing that increased G9a expression in NAcSh enhances addictive-related and anxiety-related behaviors, indicating that G9a bi-directionally controls these responses. These results also suggest that regulation of G9a-influenced gene expression could be a common epigenetic mechanism for co-morbid anxiety and psychostimulant addiction.


Asunto(s)
Ansiedad/metabolismo , Conducta Adictiva/fisiopatología , Cocaína/farmacología , Extinción Psicológica/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/fisiología , Núcleo Accumbens/metabolismo , Animales , Conducta Animal/fisiología , Estimulación Eléctrica , Técnicas de Silenciamiento del Gen , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Masculino , Ratas , Recurrencia , Esquema de Refuerzo , Autoadministración
19.
Med Biol Eng Comput ; 45(12): 1229-35, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17899236

RESUMEN

Total hip arthroplasty (THA) is one of the most effective treatments for osteoarthritis and rheumatoid arthritis. Dislocation of the femoral head from the acetabular socket is a major problem of THA. To prevent dislocation, it is important to know the range of motion (ROM) after THA. Although various studies on the ROM were carried out, there exist only a few reports on ROM evaluation in individual patients. This is because in clinical cases, bone-to-bone and bone-to-component contacts must be considered besides the impingement of components. In this study, a new method for evaluating ROM of internal/external rotation, which takes into account all combinations of contacts between the bones and components, was proposed. A computer simulation demonstrated that the RMS error of the proposed method was approximately 3 degrees . The method was applied to 33 THAs under various conditions of flexion and adduction angles. The method was able to detect any type of impingement. The evaluated ROM was in good agreement with that measured during the THA operation (correlation coefficient = 0.91).


Asunto(s)
Prótesis de Cadera , Imagenología Tridimensional , Inestabilidad de la Articulación/diagnóstico por imagen , Osteoartritis de la Cadera/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anciano , Anciano de 80 o más Años , Artroplastia de Reemplazo de Cadera , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Cadera/cirugía , Rango del Movimiento Articular
20.
Neuroscience ; 353: 1-6, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28412501

RESUMEN

Chromatin regulation, in particular ATP-dependent chromatin remodelers, have previously been shown to be important in the regulation of reward-related behaviors in animal models of mental illnesses. Here we demonstrate that BAZ1A, an accessory subunit of the ISWI family of chromatin remodeling complexes, is downregulated in the nucleus accumbens (NAc) of mice exposed repeatedly to cocaine and of cocaine-addicted humans. Viral-mediated overexpression of BAZ1A in mouse NAc reduces cocaine reward as assessed by conditioned place preference (CPP), but increases cocaine-induced locomotor activation. Furthermore, we investigate nucleosome repositioning genome-wide by conducting chromatin immunoprecipitation (ChIP)-sequencing for total H3 in NAc of control mice and after repeated cocaine administration, and find extensive nucleosome occupancy and shift changes across the genome in response to cocaine exposure. These findings implicate BAZ1A in molecular and behavioral plasticity to cocaine and offer new insight into the pathophysiology of cocaine addiction.


Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de los fármacos , Proteínas Cromosómicas no Histona/genética , Cocaína/administración & dosificación , Núcleo Accumbens/metabolismo , Factores de Transcripción/genética , Animales , Trastornos Relacionados con Cocaína/genética , Condicionamiento Clásico/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Nucleosomas/efectos de los fármacos , Nucleosomas/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA