Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.639
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2312136121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446848

RESUMEN

Anxiety is a remarkably common condition among patients with pharyngitis, but the relationship between these disorders has received little research attention, and the underlying neural mechanisms remain unknown. Here, we show that the densely innervated pharynx transmits signals induced by pharyngeal inflammation to glossopharyngeal and vagal sensory neurons of the nodose/jugular/petrosal (NJP) superganglia in mice. Specifically, the NJP superganglia project to norepinephrinergic neurons in the nucleus of the solitary tract (NTSNE). These NTSNE neurons project to the ventral bed nucleus of the stria terminalis (vBNST) that induces anxiety-like behaviors in a murine model of pharyngeal inflammation. Inhibiting this pharynx→NJP→NTSNE→vBNST circuit can alleviate anxiety-like behaviors associated with pharyngeal inflammation. This study thus defines a pharynx-to-brain axis that mechanistically links pharyngeal inflammation and emotional response.


Asunto(s)
Faringitis , Faringe , Humanos , Animales , Ratones , Ansiedad , Encéfalo , Células Receptoras Sensoriales , Inflamación
2.
Proc Natl Acad Sci U S A ; 120(24): e2302854120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276396

RESUMEN

Stomata are pores found in the epidermis of stems or leaves that modulate both plant gas exchange and water/nutrient uptake. The development and function of plant stomata are regulated by a diverse range of environmental cues. However, how carbohydrate status in preexisting leaves might determine systemic stomatal formation within newly developing leaves has remained obscure. The glucose (Glc) sensor HEXOKINASE1 (HXK1) has been reported to decrease the stability of an ethylene/Glc signaling transcriptional regulator, EIN3 (ETHYLENE INSENSITIVE3). EIN3 in turn directly represses the expression of SUC2 (sucrose transporter 2), encoding a master transporter of sucrose (Suc). Further, KIN10, a nuclear regulator involved in energy homeostasis, has been reported to repress the transcription factor SPCH (SPEECHLESS), a master regulator of stomatal development. Here, we demonstrate that the Glc status of preexisting leaves determines systemic stomatal development within newly developing leaves by the HXK1-¦EIN3-¦SUC2 module. Further, increasing Glc levels in preexisting leaves results in a HXK1-dependent decrease of EIN3 and increase of SUC2, triggering the perception, amplification and relay of HXK1-dependent Glc signaling and thereby triggering Suc transport from mature to newly developing leaves. The HXK1-¦EIN3-¦SUC2 molecular module thereby drives systemic Suc transport from preexisting leaves to newly developing leaves. Subsequently, increasing Suc levels within newly developing leaves promotes stomatal formation through the established KIN10⟶ SPCH module. Our findings thus show how a carbohydrate signal in preexisting leaves is sensed, amplified and relayed to determine the extent of systemic stomatal development within newly developing leaves.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Azúcares/metabolismo , Hojas de la Planta/metabolismo , Etilenos/metabolismo , Sacarosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
3.
Nano Lett ; 24(10): 3204-3212, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416569

RESUMEN

The flicker frequency of incident light constitutes a critical determinant in biology. Nevertheless, the exploration of methods to simulate external light stimuli with varying frequencies and develop artificial retinal neurons capable of responsive behavior remains an open question. This study presents an artificial neuron comprising organic phototransistors. The triggering properties of neurons are modulated by optical input, enabling them to execute rudimentary synaptic functions, emulating the biological characteristics of retinal neurons. The artificial retinal neuron exhibits varying responses to incoming light frequencies, allowing it to replicate the persistent visual behavior of the human eye and facilitating image discrimination. Additionally, through seamless integration with circuitry, it can execute motion recognition on a machine cart, preventing collisions with high-speed obstacles. The artificial retinal neuron offers a cost-effective and energy-efficient route for future mobile robot processors.


Asunto(s)
Retina , Visión Ocular , Humanos , Neuronas/fisiología
4.
Nano Lett ; 24(7): 2345-2351, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38334460

RESUMEN

Nonvolatile multistate manipulation of two-dimensional (2D) magnetic materials holds promise for low dissipation, highly integrated, and versatile spintronic devices. Here, utilizing density functional theory calculations and Monte Carlo simulations, we report the realization of nonvolatile and multistate control of topological magnetism in monolayer CrI3 by constructing multiferroic heterojunctions with quadruple-well ferroelectric (FE) materials. The Pt2Sn2Te6/CrI3 heterojunction exhibits multiple magnetic phases upon modulating FE polarization states of FE layers and interlayer sliding. These magnetic phases include Bloch-type skyrmions and ferromagnetism, as well as a newly discovered topological magnetic structure. We reveal that the Dzyaloshinskii-Moriya interaction (DMI) induced by interfacial coupling plays a crucial role in magnetic skyrmion manipulation, which aligns with the Fert-Levy mechanism. Moreover, a regular magnetic skyrmion lattice survives when removing a magnetic field, demonstrating its robustness. The work sheds light on an effective approach to nonvolatile and multistate control of 2D magnetic materials.

5.
Nano Lett ; 24(22): 6560-6567, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775289

RESUMEN

Kagome lattice AV3Sb5 has attracted tremendous interest because it hosts correlated and topological physics. However, an in-depth understanding of the temperature-driven electronic states in AV3Sb5 is elusive. Here we use scanning tunneling microscopy to directly capture the rotational symmetry-breaking effect in KV3Sb5. Through both topography and spectroscopic imaging of defect-free KV3Sb5, we observe a charge density wave (CDW) phase transition from an a0 × a0 atomic lattice to a robust 2a0 × 2a0 superlattice upon cooling the sample to 60 K. An individual Sb-atom vacancy in KV3Sb5 further gives rise to the local Friedel oscillation (FO), visible as periodic charge modulations in spectroscopic maps. The rotational symmetry of the FO tends to break at the temperature lower than 40 K. Moreover, the FO intensity shows an obvious competition against the intensity of the CDW. Our results reveal a tantalizing electronic nematicity in KV3Sb5, highlighting the multiorbital correlation in the kagome lattice framework.

6.
J Physiol ; 602(2): 317-332, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38152023

RESUMEN

It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that ß-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in ß-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the ß-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of ß-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by ß-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced ß-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting ß-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of ß-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of ß-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the ß-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of ß-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting ß-arrestin-1 in the RVLM.


Asunto(s)
Hipertensión , MicroARNs , Animales , Ratas , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Presión Sanguínea/fisiología , Luciferasas/metabolismo , Bulbo Raquídeo/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY
7.
J Am Chem Soc ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512775

RESUMEN

Despite their significant importance to numerous fields, the difficulties in direct and diverse synthesis of α-hydroxy-γ-lactams pose substantial obstacles to their practical applications. Here, we designed a nitrogen and TiO2 co-doped graphitic carbon-supported material with atomically dispersed cobalt sites (CoSA-N/NC-TiO2), which was successfully applied as a multifunctional catalyst to establish a general method for direct construction of α-hydroxy-γ-lactams from cheap and abundant nitro(hetero)arenes, aldehydes, and H2O with alkynoates. The striking features of operational simplicity, broad substrate and functionality compatibility (>100 examples), high step and atom efficiency, good selectivity, and exceptional catalyst reusability highlight the practicality of this new catalytic transformation. Mechanistic studies reveal that the active CoN4 species and the dopants exhibit a synergistic effect on the formation of key acid-masked nitrones; their subsequent nucleophilic addition to the alkynoates followed by successive reduction, alkenyl hydration, and intramolecular ester ammonolysis delivers the desired products. In this work, the concept of reduction interruption leading to new reaction route will open a door to further develop useful transformations by rational catalyst design.

8.
EMBO J ; 39(7): e103304, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32104923

RESUMEN

Beneficial effects of resistance exercise on metabolic health and particularly muscle hypertrophy and fat loss are well established, but the underlying chemical and physiological mechanisms are not fully understood. Here, we identified a myometabolite-mediated metabolic pathway that is essential for the beneficial metabolic effects of resistance exercise in mice. We showed that substantial accumulation of the tricarboxylic acid cycle intermediate α-ketoglutaric acid (AKG) is a metabolic signature of resistance exercise performance. Interestingly, human plasma AKG level is also negatively correlated with BMI. Pharmacological elevation of circulating AKG induces muscle hypertrophy, brown adipose tissue (BAT) thermogenesis, and white adipose tissue (WAT) lipolysis in vivo. We further found that AKG stimulates the adrenal release of adrenaline through 2-oxoglutarate receptor 1 (OXGR1) expressed in adrenal glands. Finally, by using both loss-of-function and gain-of-function mouse models, we showed that OXGR1 is essential for AKG-mediated exercise-induced beneficial metabolic effects. These findings reveal an unappreciated mechanism for the salutary effects of resistance exercise, using AKG as a systemically derived molecule for adrenal stimulation of muscle hypertrophy and fat loss.


Asunto(s)
Ácidos Cetoglutáricos/sangre , Atrofia Muscular/genética , Receptores Purinérgicos P2/genética , Entrenamiento de Fuerza/métodos , Adulto , Anciano , Animales , Línea Celular , Femenino , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Persona de Mediana Edad , Modelos Animales , Atrofia Muscular/metabolismo , Receptores Purinérgicos P2/metabolismo
9.
Biochem Biophys Res Commun ; 721: 150003, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772212

RESUMEN

BACKGROUND: In recent years, the incidence rate of nonalcoholic fatty liver disease (NAFLD) has ascended with the increasing number of metabolic diseases such as obesity and diabetes, which will bring great medical burden to society. At present, multiple scientific experiments have found that the CCR4-NOT complex can participate in regulating obesity and energy metabolism. This study is designed to explore the role and mechanism of CCR4-NOT transcription complex subunit 7 (CNOT7), a subunit of the CCR4-NOT complex in liver lipid deposition. METHODS: To establish the NAFLD cell model, palmitic acid (PA) was utilized to stimulate HepG2 cells and LO2 cells, promoting intracellular lipid deposition. CNOT7 was knockdown by siRNA and lentivirus to evaluate the effect of CNOT7 in NAFLD. RESULTS: Our results demonstrated that the expression of CNOT7 was increased in the NAFLD cell model. After knocking down CNOT7, the lipid deposition declined in HepG2 or LO2 cells treated by PA reduced. We found the lipid synthesis genes and the lipid uptake and transport factors in the CNOT7 knockdown group were significantly downregulated compared to the non-knockdown group. Furthermore, knockdown of CNOT7 might promote fatty acid oxidation. CONCLUSION: Knocking down CNOT7 can improve lipid deposition and CNOT7 may be a potential therapeutic target for NAFLD.


Asunto(s)
Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Células Hep G2 , Técnicas de Silenciamiento del Gen , Ácido Palmítico/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Hígado/metabolismo , Hígado/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Exorribonucleasas
10.
Breast Cancer Res Treat ; 205(3): 545-554, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38472593

RESUMEN

OBJECTIVE: To determine the risk of breast cancer due to lobular carcinoma in situ (LCIS). METHODS: This retrospective IRB-approved study identified cases of LCIS after percutaneous breast biopsy from 7/2005 to 7/2022. Excluded were cases with less than 2 years of imaging surveillance or a concurrent ipsilateral breast cancer diagnosis within 6 months of the LCIS diagnosis. Final outcomes of cancer versus no cancer were determined by pathology at surgical excision or the absence of cancer on imaging surveillance. RESULTS: A total of 116 LCIS lesions were identified. The primary imaging findings targeted for percutaneous biopsy included calcifications (50.0%, 58/116), MR enhancing lesions (25.0%, 29/116), noncalcified mammographic architectural distortions (10.3%, 12/116), or masses (14.7%, 17/116). Surgical excision was performed in 49.1% (57/116) and imaging surveillance was performed in 50.9% (59/116) of LCIS cases. There were 22 cancers of which 11 cancers were discovered at immediate excision [19.3% (11/57) immediate upgrade] and 11 cancers developed later while on imaging surveillance [18.6% (11/59) delayed risk for cancer]. Among all 22 cancers, 63.6% (14/22) occurred at the site of LCIS (11 at immediate excision and 3 at surveillance) and 36.4% (8/22) occurred at a location away from the site of LCIS (6 in a different quadrant and 2 in the contralateral breast). CONCLUSION: LCIS has both an immediate risk (19.3%) and a delayed risk (18.6%) for cancer with 90.9% occurring in the ipsilateral breast (63.6% at and 27.3% away from the site of LCIS) and 9.1% occurring in the contralateral breast.


Asunto(s)
Carcinoma de Mama in situ , Neoplasias de la Mama , Carcinoma Lobular , Mamografía , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etiología , Persona de Mediana Edad , Carcinoma de Mama in situ/patología , Carcinoma de Mama in situ/diagnóstico por imagen , Carcinoma Lobular/patología , Carcinoma Lobular/epidemiología , Anciano , Estudios Retrospectivos , Adulto , Factores de Riesgo , Anciano de 80 o más Años
11.
J Virol ; 97(3): e0143322, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36916989

RESUMEN

Cathelicidin antimicrobial peptides (mouse, CRAMP; human, LL-37) have broad-spectrum antiviral activities against enveloped viruses, but their mechanisms of action against nonenveloped viruses remain to be elucidated. Coxsackievirus B3 (CVB3), a member of nonenveloped virus belonging to the Enterovirus genus of Picornaviridae, is an important pathogen of viral myocarditis and dilated cardiomyopathy. Here, we observed that cardiac CRAMP expression was significantly upregulated in mice after CVB3 infection. The administration of CRAMP or LL-37 markedly suppressed CVB3 infection in mice, and CRAMP deficiency increased the susceptibility of mice to CVB3. CRAMP and LL-37 inhibited CVB3 replication in primary cardiomyocytes. However, they did not inactivate CVB3 particles and did not regulate the response of cardiomyocytes against CVB3 infection. Intriguingly, they inhibited CVB3 transmission through the exosome, but not virus receptor. In detail, CRAMP and LL-37 directly induced the lysis of exosomes by interfering with exosomal heat shock protein 60 (HSP60) and then blocked the diffusion of exosomes to recipient cells and inhibited the establishment of productive infection by exosomes. In addition, the interaction of CRAMP and LL-37 with HSP60 simultaneously inhibited HSP60-induced apoptosis in cardiomyocytes and reduced HSP60-enhanced CVB3 replication. Our findings reveal a novel mechanism of cathelicidins against viral infection and provide a new therapeutic strategy for CVB3-induced viral myocarditis. IMPORTANCE The relative mechanisms that cathelicidin antimicrobial peptides use to influence nonenveloped virus infection are unclear. We show here that cathelicidin antimicrobial peptides (CRAMP and LL-37) directly target exosomal HSP60 to destroy exosomes, which in turn block the diffusion of exosomes to recipient cardiomyocytes and reduced HSP60-induced apoptosis, thus restricting coxsackievirus B3 infection. Our results provide new insights into the mechanisms cathelicidin antimicrobial peptides use against viral infection.


Asunto(s)
Catelicidinas , Infecciones por Coxsackievirus , Exosomas , Miocitos Cardíacos , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Catelicidinas/administración & dosificación , Chaperonina 60/antagonistas & inhibidores , Infecciones por Coxsackievirus/tratamiento farmacológico , Enterovirus Humano B/fisiología , Exosomas/efectos de los fármacos , Miocarditis , Miocitos Cardíacos/efectos de los fármacos , Replicación Viral
12.
Ann Surg Oncol ; 31(4): 2224-2230, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38117388

RESUMEN

OBJECTIVE: The aim of this study was to determine surgical and clinical outcomes of lobular neoplasia (LN) diagnosed by magnetic resonance imaging (MRI) biopsy, including upgrade to malignancy, and to assess for characteristics associated with upgrade. METHOD: A single-institution retrospective study, between 2013 and 2022, of patients with histopathological findings of LN via MRI-guided biopsy was performed using an institutional database and review of the electronic medical records. Decision for excision or surveillance was made by a multidisciplinary team per institutional practice. Patient demographics and imaging characteristics were summarized using descriptive analyses. Upgrade was defined as upgrade to cancer on surgical pathology for patients treated with excision or the development of cancer at the biopsy site during surveillance. The Wilcoxon rank-sum test and Fisher's exact test were used to compare features of the upgraded cohort with the remainder of the group. RESULTS: Ninety-four MRI biopsies diagnosing LN were included. Median age was 57 years (range 37-78 years). Forty-six lesions underwent excision while 48 lesions were surveilled. The upgrade rate was 7.4% (7/94). Upgrades in the excised cohort consisted of pleomorphic lobular carcinoma in situ (LCIS; n = 1), ductal carcinoma in situ (DCIS; n = 3) and invasive lobular carcinoma (ILC; n = 2), while one interval development of DCIS was observed at the site of biopsy in the surveillance cohort. No MRI or patient variables were associated with upgrade. CONCLUSIONS: In this contemporary cohort of MRI-detected LNs, the upgrade rate was low. Omission of surgery for MRI-detected LNs in carefully selected patients may be considered in a shared decision-making capacity between the patient and the treatment team. Larger cohorts are needed to determine factors predictive of upgrade risk.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Carcinoma Lobular , Lesiones Precancerosas , Humanos , Adulto , Persona de Mediana Edad , Anciano , Femenino , Carcinoma Intraductal no Infiltrante/diagnóstico por imagen , Carcinoma Intraductal no Infiltrante/cirugía , Estudios Retrospectivos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Lesiones Precancerosas/patología , Biopsia Guiada por Imagen , Imagen por Resonancia Magnética , Carcinoma Lobular/diagnóstico por imagen , Carcinoma Lobular/cirugía , Biopsia con Aguja Gruesa , Hiperplasia
13.
J Exp Bot ; 75(5): 1314-1330, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069660

RESUMEN

Sphingolipids are membrane lipids and play critical roles in signal transduction. Ceramides are central components of sphingolipid metabolism that are involved in cell death. However, the mechanism of ceramides regulating cell death in plants remains unclear. Here, we found that ceramides accumulated in mitochondria of accelerated cell death 5 mutant (acd5), and expression of mitochondrion-localized ceramide kinase (ACD5) suppressed mitochondrial ceramide accumulation and the acd5 cell death phenotype. Using immuno-electron microscopy, we observed hyperaccumulation of ceramides in acer acd5 double mutants, which are characterized by mutations in both ACER (alkaline ceramidase) and ACD5 genes. The results confirmed that plants with specific ceramide accumulation exhibited localization of ceramides to mitochondria, resulting in an increase in mitochondrial reactive oxygen species production. Interestingly, when compared with the wild type, autophagy-deficient mutants showed stronger resistance to ceramide-induced cell death. Lipid profiling analysis demonstrated that plants with ceramide accumulation exhibited a significant increase in phosphatidylethanolamine levels. Furthermore, exogenous ceramide treatment or endogenous ceramide accumulation induces autophagy. When exposed to exogenous ceramides, an increase in the level of the autophagy-specific ubiquitin-like protein, ATG8e, associated with mitochondria, where it directly bound to ceramides. Taken together, we propose that the accumulation of ceramides in mitochondria can induce cell death by regulating autophagy.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ceramidas/metabolismo , Ceramidas/farmacología , Arabidopsis/metabolismo , Mitocondrias/metabolismo , Autofagia , Muerte Celular , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
14.
Chemistry ; 30(24): e202304373, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38282527

RESUMEN

The in-depth study on reduction-specified coupling reactions of the nitroarenes by heterogeneous cobalt catalysis opens a door for diversified syntheses of functional N-containing molecules. Guided by the structure-function relationship of heterogeneous materials, rational design of nano-catalysts can effectively regulate the routes of organic reactions. Precise transformation of the intermediates generated during the nitroarene reduction with a suitable nano-catalyst is a promising way to develop new tandem reactions, and to synthesize structurally novel compounds that are of difficult access with the conventional approaches.

15.
Chemistry ; 30(18): e202303973, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38179822

RESUMEN

As a multifunctional material, metal clusters have recently received some attention for their application in solar cells.This review delves into the multifaceted role of metal clusters in advancing solar cell technologies, covering diverse aspects from electron transport and interface modification to serving as molecular precursors for inorganic materials and acting as photosensitizers in metal-cluster sensitized solar cells (MCSSCs). The studies conducted by various researchers illustrate the crucial impact of metal clusters, such as gold nanoclusters (Au NCs), on enhancing solar cell efficiency through size-dependent effects, distinct interface behaviors, and tailored interface engineering. From optimizing charge transfer rates to improving light absorption and reducing carrier recombination, metal clusters prove instrumental in shaping the landscape of solar energy conversion.The promising performance of metal-cluster sensitized solar cells, coupled with their scalability and flexibility, positions them as a exciting avenue for future clean energy applications. The article concludes by emphasizing the need for continued interdisciplinary research and technological innovation to unlock the full potential of metal clusters in contributing to sustainable and high-performance solar cells.

16.
Brain Behav Immun ; 115: 179-190, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37848098

RESUMEN

The decline in gut microbial diversity in modern humans is closely associated with the rising prevalence of various diseases. It is imperative to investigate the underlying causes of gut microbial loss and restoring methods. Although the impact of non-perinatal antibiotic use on gut microbiota has been recognized, its intergenerational effects remain unexplored. Our previous research has highlighted soil in the farm environment as a key factor for gut microbiome health by restoring gut microbial diversity and balance. In this study, we investigated the intergenerational consequences of antibiotic exposure and the therapeutic potential of sterile soil. We treated C57BL/6 mice with vancomycin and streptomycin for 2 weeks continuously, followed by a 4-8 week withdrawal period before breeding. The process was repeated across 3 generations. Half of the mice in each generation received an oral sterile soil intervention. We assessed gut microbial diversity, anxiety behavior, microglial reactivity, and gut barrier integrity across generations. Antibiotic exposure led to a decrease in gut microbial diversity over generations, along with aggravated anxiety behavior, microgliosis, and altered intestinal tight junction protein expression. Oral sterile soil intervention restored gut microbial diversity in adult mice across generations, concomitantly rescuing abnormalities in behavior, microgliosis, and intestinal barrier integrity. In conclusion, this study simulated an important process of the progressive loss of gut microbiota diversity in modern humans and demonstrated the potential of sterile soil to reverse this process. This study provides a theoretical and experimental basis for research and interventions targeting multiple modern chronic diseases related to intestinal microorganisms.


Asunto(s)
Antibacterianos , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Antibacterianos/farmacología , Suelo , Ratones Endogámicos C57BL
17.
Mol Psychiatry ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001338

RESUMEN

The hypothalamus plays a crucial role in controlling metabolism and energy balance, with Agouti-related protein (AgRP) neurons and proopiomelanocortin (POMC) neurons being essential components of this process. The proper development of these neurons is important for metabolic regulation in later life. Microglia, the resident immune cells in the brain, have been shown to significantly influence neurodevelopment. However, their role in shaping the postnatal development of hypothalamic neural circuits remains underexplored. In this study, we investigated the dynamic changes of microglia in the hypothalamic arcuate nucleus (ARC) during lactation and their impact on the maturation of AgRP and POMC neurons. We demonstrated that microglial depletion during a critical period of ARC neuron maturation increases the number of AgRP neurons and fiber density, with less effect on POMC neurons. This depletion also resulted in increased neonatal feeding behavior. Mechanistically, microglia can engulf perineuronal net (PNN) components surrounding AgRP neurons both in vivo and ex vivo. The absence of microglia leads to increased PNN formation and enhanced leptin sensitivity in ARC. Our findings suggest that microglia participate in the postnatal development of AgRP neurons by regulating the plasticity of PNN formation. This study contributes to a better understanding of microglia's role in shaping hypothalamic neural circuits during postnatal development and their impact on metabolism regulation.

18.
Immunity ; 43(2): 304-17, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26253786

RESUMEN

Antimicrobial peptides (AMPs) expressed by epithelial and immune cells are largely described for the defense against invading microorganisms. Recently, their immunomodulatory functions have been highlighted in various contexts. However how AMPs expressed by non-immune cells might influence autoimmune responses in peripheral tissues, such as the pancreas, is unknown. Here, we found that insulin-secreting ß-cells produced the cathelicidin related antimicrobial peptide (CRAMP) and that this production was defective in non-obese diabetic (NOD) mice. CRAMP administrated to prediabetic NOD mice induced regulatory immune cells in the pancreatic islets, dampening the incidence of autoimmune diabetes. Additional investigation revealed that the production of CRAMP by ß-cells was controlled by short-chain fatty acids produced by the gut microbiota. Accordingly, gut microbiota manipulations in NOD mice modulated CRAMP production and inflammation in the pancreatic islets, revealing that the gut microbiota directly shape the pancreatic immune environment and autoimmune diabetes development.


Asunto(s)
Catelicidinas/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Células Secretoras de Insulina/inmunología , Intestinos/inmunología , Microbiota/fisiología , Páncreas/inmunología , Animales , Péptidos Catiónicos Antimicrobianos , Catelicidinas/genética , Diabetes Mellitus Tipo 1/microbiología , Ácidos Grasos Volátiles/inmunología , Femenino , Intestinos/microbiología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Páncreas/microbiología
19.
Physiol Plant ; 176(2): e14271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566130

RESUMEN

Seed dormancy is an important life history state in which intact viable seeds delay or prevent germination under suitable conditions. Ascorbic acid (AsA) acts as a small molecule antioxidant, and breaking seed dormancy and promoting subsequent growth are among its numerous functions. In this study, a germination test using Pyrus betulifolia seeds treated with exogenous AsA or AsA synthesis inhibitor lycorine (Lyc) and water absorption was conducted. The results indicated that AsA released dormancy and increased germination and 20 mmol L-1 AsA promoted cell division, whereas Lyc reduced germination. Seed germination showed typical three phases of water absorption; and seeds at five key time points were sampled for transcriptome analysis. It revealed that multiple pathways were involved in breaking dormancy and promoting germination through transcriptome data, and 12 differentially expressed genes (DEGs) related to the metabolism and signal transduction of abscisic acid (ABA) and gibberellins (GA) were verified by subsequent RT-qPCR. For metabolites, exogenous AsA increased endogenous AsA and GA3 but reduced ABA and the ABA/GA3 ratio. In addition, three genes regulating ABA synthesis were downregulated by AsA, while five genes mediating ABA degradation were upregulated. Taken together, AsA regulates the pathways associated with ABA and GA synthesis, catalysis, and signal transduction, with subsequent reduction in ABA and increase in GA and further the balance of ABA/GA, ultimately releasing dormancy and promoting germination.


Asunto(s)
Giberelinas , Pyrus , Giberelinas/farmacología , Giberelinas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Germinación , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Pyrus/metabolismo , Ácido Ascórbico/metabolismo , Latencia en las Plantas/genética , Semillas , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
AJR Am J Roentgenol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140632

RESUMEN

Background: Advanced MRI-based neuroimaging techniques, such as perfusion and spectroscopy, have been increasingly incorporated into routine follow-up protocols in patients treated for high-grade glioma (HGG), to help differentiate tumor progression from treatment effect. However, these techniques' influence on clinical management remains poorly understood. Objective: To evaluate the impact of MRI-based advanced neuroimaging on clinical decision-making in patients with HGG in the posttreatment setting. Methods: This prospective study, performed at a comprehensive cancer center from March 1, 2017, to October 31, 2020, included adult patients treated by chemoradiation for WHO grade 4 diffuse glioma who underwent MRIbased advanced neuroimaging (comprising multiple perfusion imaging sequences and spectroscopy) to further evaluate findings on conventional MRI equivocal for tumor progression versus treatment effect. The ordering neuro-oncologists completed surveys before and after each advanced neuroimaging session. The percent of care episodes with a change between the intended and actual management plan on the surveys conducted before and after advanced neuroimaging, respectively, was computed and compared with a previously published percent using the Wald test for independent samples proportions. Results: The study included 63 patients (mean age, 55±13 years; 36 women, 27 men) who underwent 70 advanced neuroimaging sessions. Ordering neuro-oncologists' intended and actual management plans on the surveys completed before and after advanced neuroimaging, respectively, differed in 44% (31/70, [95% CI: 33-56%]) of episodes, which differed from the previously published frequency of 8.5% (5/59) (p<.001). These management plan changes included selection of a different plan for 6/8 episodes with an intended plan to enroll patients in a clinical trial, 12/19 episodes with an intended plan to change chemotherapeutic agents, 4/8 episodes with an intended plan of surgical intervention, and 1/2 episodes with an intended plan of re-irradiation. The ordering neuro-oncologists found advanced neuroimaging to be helpful in 93% (95% CI: 87%-99%) (65/70) of episodes. Conclusion: Neuro-oncologists' management plans changed in a substantial fraction of adult patients with HGG who underwent advanced neuroimaging to further evaluate conventional MRI findings equivocal for tumor progression versus treatment effect. Clinical Impact: The findings support incorporation of advanced neuroimaging into HGG posttreatment monitoring protocols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA