Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38192042

RESUMEN

AIM: This study aimed to investigate the positive effect of natto powder on obese rats fed with a high-fat diet (HFD). METHODS AND RESULTS: Sprague-Dawley rats were fed with a HFD for 8 weeks continuously and gavaged with natto powder, respectively, for 8 weeks starting from the ninth week. The results showed that natto powder significantly reduced the body weight of rats and maintained the balance of cholesterol metabolism in the body by inhibiting the activity of liver X receptors (LXR) target genes, increasing the active expression of cholesterol 7 alpha-hydroxylase, and reducing the active expression of sterol-regulatory element-binding protein and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Furthermore, natto powder increased the relative abundance of potentially beneficial microbiota in gut and decreased the relative abundance of obesity-related harmful bacteria, and also increased the Bacteroidetes/Firmicutes ratio and improved the composition of gut microbiota. CONCLUSIONS: Natto powder maintains the balance of cholesterol metabolism by inhibiting the LXR pathway and regulating the gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Alimentos de Soja , Ratas , Animales , Ratones , Polvos/farmacología , Receptores X del Hígado , Ratas Sprague-Dawley , Obesidad/microbiología , Dieta Alta en Grasa , Colesterol/metabolismo , Ratones Endogámicos C57BL
2.
Molecules ; 28(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38138505

RESUMEN

Soybean meal (SBM) is a high-quality vegetable protein, whose application is greatly limited due to its high molecular weight and anti-nutritional properties. The aim of this study was to modify the protein of soybean meal via solid-state fermentation of Bacillus subtilis. The fermentation conditions were optimized as, finally, the best process parameters were obtained, namely fermentation temperature of 37 °C, inoculum amount of 12%, time of 47 h, and material-liquid ratio of 1:0.58, which improved the content of acid-soluble protein. To explore the utilization of modified SBM as a food ingredient, the protein structure and properties were investigated. Compared to SBM, the protein secondary structure of fermented soybean meal (FSBM) from the optimal process decreased by 8.3% for α-helix content, increased by 3.08% for ß-sheet, increased by 2.71% for ß-turn, and increased by 2.51% for random coil. SDS-PAGE patterns showed that its 25-250 KDa bands appeared to be significantly attenuated, with multiple newborn peptide bands smaller than 25 KDa. The analysis of particle size and zeta potential showed that fermentation reduced the average particle size and increased the absolute value of zeta potential. It was visualized by SEM and CLSM maps that the macromolecular proteins in FSBM were broken down into fragmented pieces with a folded and porous surface structure. Fermentation increased the solubility, decreased the hydrophobicity, increased the free sulfhydryl content, decreased the antigenicity, improved the protein properties of SBM, and promoted further processing and production of FSBM as a food ingredient.


Asunto(s)
Ingredientes Alimentarios , Proteínas de Soja , Humanos , Recién Nacido , Proteínas de Soja/metabolismo , Bacillus subtilis/metabolismo , Fermentación , Harina , Glycine max , Alimentación Animal/análisis
3.
Molecules ; 28(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770993

RESUMEN

Soybean residue is a by-product of soybean product production that is wasted unreasonably at present. Accomplishing the efficient utilization of soybean residue can save resources. A composite microbial system was constructed using lactic acid bacteria (LAB) and Saccharomyces cerevisiae (SC), and modified soybean residue was prepared by solid fermentation. In order to explore the value of modified soybean residue as a food raw material, its physical and chemical properties, adsorption properties, and antioxidant properties were studied. The results showed that the soluble dietary fiber (SDF) yield of mixed fermentation (MF) increased significantly. Both groups of soybean residues had representative polysaccharide infrared absorption peaks, and MF showed a looser structure and lower crystallinity. In terms of the adsorption capacity index, MF also has a higher adsorption capacity for water molecules, oil molecules, and cholesterol molecules. In addition, the in vitro antioxidant capacity of MF was also significantly higher than that of unfermented soybean residue (UF). In conclusion, our study shows that mixed fermentation could increase SDF content and improve the functional properties of soybean residue. Modified soybean residue prepared by mixed fermentation is the ideal food raw material.


Asunto(s)
Antioxidantes , Glycine max , Glycine max/química , Antioxidantes/química , Fermentación , Fibras de la Dieta , Adsorción
4.
Biochem Biophys Res Commun ; 603: 160-166, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35298948

RESUMEN

Obesity has become the second leading cause of death globally after smoking. Probiotic Bacillus has noticeable weight-loss effects. This study aimed to investigate the mechanism of Bacillus natto (B. natto) on insulin resistance in obese rats. The obese rat model was established with a HFD for 8 weeks, and then, B. natto was orally administered at different dosed for 8 weeks. The results showed that B. natto significantly reduced the body weight, epididymis fat weight, total cholesterol, triglyceride, low-density lipoprotein while increasing the level of high-density lipoprotein in HFD rats. B. natto intervention improved liver injury by reducing alanine aminotransferase and aspartate transaminase levels. B. natto intervention was also beneficial for the inhibition of hepatic steatosis and inflammation factors in HFD rats by inhibiting the mRNA expression level of SREBP-1 gene. Moreover, B. natto improved insulin resistance homeostasis by activating PI3K/AKT signaling pathway. Therefore, B. natto could be used as a potential probiotic supplement to provided new strategy for the prevention and treatment of metabolic diseases such as obesity.


Asunto(s)
Bacillus , Resistencia a la Insulina , Alimentos de Soja , Animales , Bacillus/metabolismo , Dieta Alta en Grasa , Insulina/metabolismo , Hígado/metabolismo , Masculino , Obesidad/metabolismo , Obesidad/terapia , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
5.
J Appl Microbiol ; 133(6): 3634-3644, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36036228

RESUMEN

AIMS: This study aimed to investigate the effects of Bacillus subtilis natto JLCC513 (JLCC513) on gut microbiota, inflammation and intestinal barrier function in high-fat-diet (HFD) rats. METHODS AND RESULTS: Sprague-Dawley (SD) rats were fed HFD for 16 weeks, and treated with JLCC513 in 9th week. The oral administration of JLCC513 decreased body weight and reduced the inflammation level in HFD rats. Pathologically, JLCC513 prevented the detachment of ileal villus and increased the villus height in rats. Mechanistically, western blot analysis showed that the protein levels of tight junction (TJ) proteins involved in intestinal barrier function, including zonula occludens-1 (ZO-1), occludin and claudin-1, were increased after JLCC513 treatment. Meanwhile, JLCC513 treatment also decreased the protein levels of toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB) and NOD-like receptor protein 3 (NLRP3), indicating inhibition of the TLR4/NF-κB/NLRP3 pathway. Furthermore, faecal analysis showed that JLCC513 increased the abundance of Lactobacillus and Oscillospira and the ratio of Firmicutes/Bacteroidetes (F/B), and decreased the levels of Blautia and C_Clostridium. CONCLUSIONS: JLCC513 alleviated intestinal barrier dysfunction by inhibiting TLR4/NF-κB/NLRP3 pathway and regulating gut microbiota disorders. SIGNIFICANCE AND IMPACT OF STUDY: Our study might provide new treatment strategies for obesity and metabolic diseases.


Asunto(s)
Microbioma Gastrointestinal , Alimentos de Soja , Ratas , Animales , Receptor Toll-Like 4 , FN-kappa B/metabolismo , Bacillus subtilis/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Sprague-Dawley , Obesidad , Mucosa Intestinal/metabolismo , Inflamación
6.
Food Res Int ; 183: 114199, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760132

RESUMEN

In this study, we conducted an analysis of the differences in nutrient composition and protein structure among various fermented soybean products and their impacts on the gut microbiota of rats. Conventional physicochemical analysis was employed to analyze the fundamental physicochemical composition of the samples. Additionally, we utilized high-performance liquid chromatography and ELISA techniques to quantify the presence of antinutritional compounds. Fourier infrared spectroscopy was applied to delineate the protein structure, while 16 s rRNA gene sequencing was conducted to evaluate alterations in gut microbiota abundance. Subsequently, KEGG was utilized for metabolic pathway analysis. Our findings revealed that fermented soybean products improved the nutritional profile of soybeans. Notably, Douchi exhibited the highest protein content at 52.18 g/100 g, denoting a 26.58 % increase, whereas natto showed a 24.98 % increase. Douchi and natto demonstrated the most substantial relative amino acid content, comprising 50.86 % and 49.04 % of the total samples, respectively. Moreover, the levels of antinutritional factors markedly decreased post-fermentation. Specifically, the α-helix content in doujiang decreased by 13.87 %, while the random coil content in soybean yogurt surged by 132.39 %. Rats that were fed FSP showcased notable enhancements in gut microbiota and associated metabolic pathways. A strong correlation was observed between nutrient composition, protein structure, and gut microbiota abundance. This study furnishes empirical evidence supporting the heightened nutritional attributes of FSPs.


Asunto(s)
Fermentación , Microbioma Gastrointestinal , Glycine max , Valor Nutritivo , Animales , Glycine max/química , Ratas , Masculino , Ratas Sprague-Dawley , Alimentos Fermentados/microbiología , Proteínas de Soja , Alimentos de Soja/análisis , Alimentos de Soja/microbiología , Aminoácidos/análisis
7.
J Microbiol Biotechnol ; 34(6): 1287-1298, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38783703

RESUMEN

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that is currently difficult to treat effectively. Both Bacillus natto (BN) and ginseng-soluble dietary fiber (GSDF) are anti-inflammatory and helps sustain the intestinal barrier. In this study, the protective effects and mechanism of the combination of B. natto JLCC513 and ginseng-soluble dietary fiber (BG) in DSS-induced UC mice were investigated. Intervention with BG worked better than taking BN or GSDF separately, as evidenced by improved disease activity index, colon length, and colon injury and significantly reduced the levels of oxidative and inflammatory factors (LPS, ILs, and TNF-α) in UC mice. Further mechanistic study revealed that BG protected the intestinal barrier integrity by maintaining the tight junction proteins (Occludin and Claudin1) and inhibited the LPS/TLR4/NF-κB pathway in UC mice. In addition, BG increased the abundance of beneficial bacteria such as Bacteroides and Turicibacter and reduced the abundance of harmful bacteria such as Allobaculum in the gut microbiota of UC mice. BG also significantly upregulated genes related to linoleic acid metabolism in the gut microbiota. These BG-induced changes in the gut microbiota of mice with UC were significantly correlated with changes in pathological indices. In conclusion, this study demonstrated that BG exerts protective effect against UC by regulating the LPS/TLR4/NF-κB pathway and the structure and metabolic function of gut microbiota. Thus, BG can be potentially used in intestinal health foods to treat UC.


Asunto(s)
Bacillus , Colitis Ulcerosa , Fibras de la Dieta , Microbioma Gastrointestinal , Lipopolisacáridos , FN-kappa B , Panax , Receptor Toll-Like 4 , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Ratones , Fibras de la Dieta/farmacología , Panax/química , Colitis Ulcerosa/microbiología , Lipopolisacáridos/metabolismo , Bacillus/metabolismo , Masculino , Transducción de Señal , Modelos Animales de Enfermedad , Colon/microbiología , Colon/metabolismo , Colon/patología , Ratones Endogámicos C57BL , Probióticos/administración & dosificación , Probióticos/farmacología , Sulfato de Dextran , Antiinflamatorios/farmacología
8.
Front Nutr ; 10: 1125720, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908914

RESUMEN

Background: Tofu whey wastewater (TWW) is the wastewater of tofu processing, which is rich in a variety of nutrients. Rhodotorula glutinis can make full use of TWW to ferment and reproduce yeast cells, produce carotenoids and other nutrients, improve the utilization value of TWW, and reduce environmental pollution and resource waste. Methods: In this study, the nutrient composition changes of TWW treated by Rhodotorula glutinis were analyzed to reformulate TWW medium, and the optimal composition and proportion of TWW medium that can improve the biomass and carotenoids production of Rhodotorula glutinis were explored. Meanwhile, the Rhodotorula glutinis liquid obtained under these conditions was used to prepare biological feed for laying hens, and the effect of Rhodotorula glutinis growing on TWW as substrate on laying performance and egg quality of laying hens were verified. Results: The results showed that the zinc content of TWW after Rhodotorula glutinis fermentation increased by 62.30%, the phosphorus content decreased by 42.31%, and the contents of vitamin B1, B2 and B6 increased to varying degrees. The optimal fermentation conditions of Rhodotorula glutinis in the TWW medium were as follow: the initial pH was 6.40, the amount of soybean oil, glucose and zinc ions was 0.80 ml/L, 16.32 g/L, and 20.52 mg/L, respectively. Under this condition, the biomass of Rhodotorula glutinis reached 2.23 g/L, the carotenoids production was 832.86 µg/g, and the number of effective viable yeast count was 7.08 × 107 cfu/ml. In addition, the laying performance and egg quality of laying hens fed Rhodotorula glutinis biological feed were improved. Discussion: In this study, we analyzed the composition changes of TWW, optimized the fermentation conditions of Rhodotorula glutinis in TWW medium, explored the influence of Rhodotorula glutinis utilizing TWW on laying layers, and provided a new idea for the efficient utilization of TWW.

9.
Sci Rep ; 12(1): 3005, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194113

RESUMEN

Macromolecular protein crystallisation was one of the potential tools to accelerate the biomanufacturing of biopharmaceuticals. In this work, it was the first time to investigate the roles of biotemplates, Saccharomyces cerevisiae live cells, in the crystallisation processes of lysozyme, with different concentrations from 20 to 2.5 mg/mL lysozyme and different concentrations from 0 to 5.0 × 107 (cfu/mL) Saccharomyces cerevisiae cells, during a period of 96 h. During the crystallisation period, the nucleation possibility in droplets, crystal numbers, and cell growth and cell density were observed and analysed. The results indicated the strong interaction between the lysozyme molecules and the cell wall of the S. cerevisiae, proved by the crystallization of lysozyme with fluorescent labels. The biotemplates demonstrated positive influence or negative influence on the nucleation, i.e. shorter or longer induction time, dependent on the concentrations of the lysozyme and the S. cerevisiae cells, and ratios between them. In the biomanufacturing process, target proteins were various cells were commonly mixed with various cells, and this work provides novel insights of new design and application of live cells as biotemplates for purification of macromolecules.


Asunto(s)
Biofarmacia/métodos , Cristalización , Muramidasa/química , Muramidasa/metabolismo , Saccharomyces cerevisiae/metabolismo , Pared Celular/metabolismo , Colorantes Fluorescentes , Sustancias Macromoleculares , Muramidasa/aislamiento & purificación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo
10.
Food Funct ; 13(13): 7377-7391, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35730792

RESUMEN

Black rice and black bean have not yet been fully investigated as healthy foods for their therapeutic effects on type 2 diabetes mellitus (T2DM). In this study, we aimed to evaluate the antidiabetic effects of black rice, black bean husk anthocyanin extracts, and their combination on glycolipid metabolism, gut microbiota, and serum metabolites in T2DM rats. Black bean husk and black rice anthocyanin extracts were administered to T2DM rats by gavage for 4 weeks. The results showed that black rice and black bean husk anthocyanin extracts significantly improved blood glucose, insulin resistance, serum oxidative stress state, lipid metabolism and inflammatory cytokines levels in rats, and alleviated liver damage. Black rice and black bean husk anthocyanin extracts increased the abundance of short-chain fatty acid (SCFA) producing bacteria Akkermansia spp., Phascolarctobacterium spp., Bacteroides spp., and Coprococcus spp., changed the gut microbiota structure; activated AMPK, PI3K, and AKT; inhibited HMGCR, G6pase and PEPCK expression; and inhibited hepatic gluconeogenesis. Moreover, by adjusting the levels of urea, deoxycytidine, L-citrulline, pseudouridine, and other serum metabolites in T2DM rats, the arginine biosynthesis and pyrimidine metabolism pathways were downregulated. The above results indicated that black rice and black bean husk anthocyanin extracts had a significant impact on the development of T2DM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Oryza , Animales , Antocianinas/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA